CGH RINCÃO DA PONTE

RIO FORTALEZA

4° RELATÓRIO DE MONITORAMENTO DOS PROGRAMAS AMBIENTAIS

JULHO/ 2022

SUMÁRIO

1	IDENTIFICAÇÃO	8
1.1	EMPREENDEDOR	8
1.2	EMPRESA RESPONSÁVEL PELOS ESTUDOS	8
1.3	EQUIPE TÉCNICA	8
1.4	EMPREENDIMENTO	
2	INTRODUÇÃO	
3	PROGRAMA DE GESTÃO E SUPERVISÃO AMBIENTAL	10
3.1	ATIVIDADES DESENVOLVIDAS	11
4	PROGRAMA DE COMUNICAÇÃO SOCIAL E EDUCAÇÃO AMBIENTAL	16
4.1	OBJETIVOS	16
4.2	ATIVIDADES DESENVOLVIDAS	
5	PROGRAMA DE MONITORAMENTO DA QUALIDADE DA Á	
	PERFICIAL	
5.1	ATIVIDADES DESENVOLVIDAS	
5.2	RESULTADOS E DISCUSSÕES	
5.3 ZO(COMUNIDADES AQUÁTICAS: FITOPLÂNCTON, ZOOPLÂNCTO OBENTOS	27
5.4	METODOLOGIAS DE COLETA	
5.5	RESULTADOS E DISCUSSÕES	
5.6	CONSIDERAÇÕES FINAIS	
5.7	RELATÓRIO FOTOGRÁFICO	
5.8	ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA	
6	PLANO DE MONITORAMENTO DE EROSÕES E ASSOREAMENTO	
6.1	OBJETIVOS	35
6.2	ATIVIDADES DESENVOLVIDAS	
6.3		
7	PROGRAMA DE RECUPERAÇÃO DE ÁREAS DEGRADADAS	
7.1	OBJETIVO	
7.2		
7.1	ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA	42
8	PROGRAMA DE MONITORAMENTO DA FAUNA TERRESTRE	43
8.1	AVIFAUNA	
8.2		
8.3		
8.4	ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA	71

8.5	PONTOS E ESFORÇO AMOSTRAL DE FAUNA TERRESTRE	71
9 PF	ROGRAMA DE MONITORAMENTO DE FAUNA AMEAÇADA	74
9.1	OBJETIVOS	75
9.2	METODOLOGIA	75
9.3	RESULTADOS	76
10 PF	ROGRAMA DE MONITORAMENTO DA ICTIOFAUNA	77
10.1	ATIVIDADES DESENVOLVIDAS	77
10.2	RESULTADOS E DISCUSSÃO	78
10.3	CONSIDERAÇÕES FINAIS	84
10.4	ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA	86
10.5	ESFORÇO AMOSTRAL DA ICTIOFAUNA	86
11 PF	ROGRAMA DE GERENCIAMENTO DE RESÍDUOS	
11.1	OBJETIVOS	87
11.2	ATIVIDADES REALIZADAS	87
11.3	ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA	88
12 PF	ROGRAMA DE MONITORAMENTO E CONTROLE DE MAC	CRÓFITAS
AQUÁ	TICAS	89
12.1	OBJETIVOS	
12.2	ATIVIDADES REALIZADAS	
12.3	ATIVIDADES PREVISTAS PARA O PRÓXIMO SEMESTRE	
13 CI	RONOGRAMA DE REALIZAÇÃO DAS CAMPANHAS DE MONITOR	
	EFERÊNCIAS BIBLIOGRÁFICAS	
15 AI	NEXOS	101
	LISTA DE FIGURAS	
Figura	3.1:Vista aérea do barramento do empreendimento	12
	3.2: Vista aérea da casa de força do empreendimento	
_	3.3: Vista dos condutos forçados do empreendimento.	
	3.4: Placa com informações do licenciamento do empreendimento	
	ı 3.5: Central de resíduos ı 3.6: Recuperação da área do empreendimento	
	3.7: Recuperação da área do empreendimento	
	1 4.1: Entrega de <i>folders</i> a colaboradores	
_	4.2: Entrega de <i>folder</i> s a colaboradores	
	4.3: Entrega de <i>folder</i> s a colaboradores	
Figura	4.4: Entrega de <i>folders</i> a colaboradores	17

Figura 4.5: Entrega de <i>folder</i> s a colaboradores	17
Figura 4.6: Conversa com colaboradores	
Figura 4.7: Modelo do <i>folder</i> informativo	19
Figura 5.1: Aferição da profundidade com disco de Secchi – 4º Relatório	33
Figura 5.2: Coleta de água – 4º Relatório	
Figura 5.3: Coleta com rede Fitoplâncton – 4º Relatório	33
Figura 5.4: Coleta de Fitoplâncton – 4º Relatório	
Figura 5.5: Coleta de água – 4º Relatório	
Figura 5.6: Coleta de água – 4º Relatório	33
Figura 5.7: Coleta com rede Fitoplâncton – 4º Relatório	34
Figura 5.8: Aferição da temperatura – 4º Relatório	34
Figura 6.1: Taludes ao longo da obra da CGH Rincão da Ponte	36
Figura 6.2: Vista aérea dos taludes ao longo do canal adutor	37
Figura 6.3: Vista aérea dos taludes ao longo do canal adutor	37
Figura 7.1: Vista aérea (drone) das áreas do empreendimento	devidamente
recuperadas	40
Figura 7.2: Vista aérea (drone) das áreas do empreendimento	devidamente
recuperadas	40
Figura 7.3: Vista aérea (drone) das áreas do empreendimento	devidamente
recuperadas	41
Figura 7.4: Vista aérea (drone) das áreas do empreendimento	devidamente
recuperadas	
Figura 8.1: Busca ativa de avifauna – 4° Relatório	
Figura 8.2: Registro fotográfico – 4° Relatório	56
Figura 8.3: Busca ativa noturna de avifauna – 4º Relatório	
Figura 8.4: Registro auditivo – 4° Relatório	
Figura 8.5: <i>Tyto furcata</i> (suindara) – 4° Relatório	
Figura 8.6: <i>Tyrannus melancholicus</i> (suiriri) – 4° Relatório	
Figura 8.7: <i>Syrigma sibilatrix</i> (maria-faceira) – 4° Relatório	
Figura 8.8: <i>Pygochelidon cyanoleuca</i> (andorinha-pequena-de-casa) – 4°	
Figura 8.9: <i>Theristicus caudatus</i> (curicaca) – 4° Relatório	
Figura 8.10: <i>Tyto furcata</i> (suindara) – 4° Relatório	
Figura 8.11: <i>Milvago chimango</i> (chimango) – 4° Relatório	
Figura 8.12: <i>Heterospizias meridionali</i> s (gavião-cabloco) – 4° Relatório	
Figura 8.13: Instalação de armadilhas fotográfica – 4º Relatório	
Figura 8.14: Iscas utilizadas – 4° Relatório	
Figura 8.15: Registro de vestígios – 4° Relatório	
Figura 8.16: Instalação de armadilhas fotográfica – 4° Relatório	
Figura 8.17: Cerdocyon thous (graxaim) - 4° Relatório	
Figura 8.18: <i>Dasypus novemcinctus</i> (tatu-galinha) - 4º Relatório	
Figura 8.19: <i>Hydrochoerus hydrochaeri</i> s (capivara) - 4° Relatório	
Figura 8.20: <i>Lepus europaeus</i> (lebrão) - 4º Relatório	65

Figura 8.21: Puma concolor (onça-parda) - 4° Relatório	65
Figura 8.22: Didelphis albiventris (gambá-de-orelha-branca) - 4° Relatório	65
Figura 8.23: Dasypus novemcinctus (tatu-galinha) - 4° Relatório	65
Figura 8.24: Mazama gouazoubira (veado-catingueiro) - 4° Relatório	65
Figura 8.25: Busca ativa de herpetofauna – 4º Relatório	70
Figura 8.26: Busca ativa de herpetofauna – 4º Relatório	70
Figura 8.27: Registro de <i>Physalaemus cuvieri</i> (rã-cachorro) – 4° Relatório	70
Figura 8.28: Registro de Salvator marinae (teiú) – 4° Relatório	70
Figura 9.1: Chrysocyon brachyurus (lobo-guará) – 2º Relatório	76
Figura 9.2: <i>Puma concolor</i> (onça-parda) – 4º Relatório	
Figura 10.1: Barreira natural da CGH Rincão da Ponte	82
Figura 10.2: Instalação das redes de espera – 4° Relatório	
Figura 10.3: Aferição dos dados biométricos – 4° Relatório	84
Figura 10.4: Instalação das redes de espera – 4° Relatório	
Figura 10.5: Devolução de indivíduo ao rio – 4° Relatório	84
Figura 10.6: <i>Hypostomus aff margaritifer</i> (cascudo) – 4° Relatório	85
Figura 10.7: <i>Rhamdia quelen</i> (jundiá) – 4° Relatório	85
Figura 10.8: <i>Hemiancistrus</i> sp. (cascudo) – 4° Relatório	85
Figura 10.9: Hypostomus ancistroides (cascudo) – 4° Relatório	85
Figura 10.10: Characidium zebra (mocinha) – 4° Relatório	85
Figura 10.11: <i>Hypostomus derbyi</i> (cascudo) – 4° Relatório	85
Figura 10.12: <i>Hypostomus paulinus</i> (cascudo) – 4° Relatório	86
Figura 10.13: Geophagus iporangensis (cará) – 4° Relatório	86
Figura 11.1: Lixeiras instaladas próximo a Casa de Força	88
Figura 11.2: Lixo descartado de maneira correta no empreendimento	
Figura 12.1: Transectos de busca ativa de macrófitas – 4º Relatório	90
LISTA DE TABELAS	
Tabela 5.1: Caracterização dos pontos da avaliação da qualidade de á	gua, e
localização	
Tabela 5.2: Resultados dos parâmetros na avaliação da qualidade de água r	na área
de influência da CGH Rincão da Ponte/PR – 1°, 2º e 3º Relatório	22
Tabela 5.3: Resultados dos parâmetros na avaliação da qualidade de água r	na área
de influência da CGH Rincão da Ponte/PR – 3º e 4º Relatório	23
Tabela 5.4: Índice da qualidade de água (IQA) nos pontos amostrados na á	irea de
influência do empreendimento hidrelétrico CGH Rincão da Ponte	25
Tabela 5.5: Índice de estado trófico (IET) nos pontos amostrados para as cam	panhas
realizadas na área de influência do empreendimento hidrelétrico CGH Rin	cão da
Ponte	27
Tabela 5.6: Resultado das análises de fitoplâncton – BAR (P01)	
Tabela 5.7: Resultado das análises de fitoplâncton – TVR (P02)	29

Tabela 5.8: Resultado das análises de fitoplâncton – CF (P03)	30
Tabela 5.9: Resultado das análises de zooplâncton – BAR (P01)	31
Tabela 5.10: Resultado das análises de zooplâncton – TVR (P02)	31
Tabela 5.11: Resultado das análises de zooplâncton – CF(P03)	31
Tabela 5.12: Resultado das análises de zooplâncton – BAR (P01)	31
Tabela 5.13: Resultado das análises de zooplâncton – TVR (P02)	31
Tabela 5.14: Resultado das análises de zooplâncton – CF(P03)	32
Tabela 8.1: Lista de espécies da avifauna registradas nas áreas de influência da CG	
Tabela 8.2: Contingência da relação entre o contato e os habitats preferenciais o	ab
avifauna registrada na área de influência do empreendimento	
Tabela 8.3: Lista de espécies da mastofauna registrada nas áreas de influência d	
CGH6	
Tabela 8.4: Lista de espécies da herpetofauna registrados durante os monitoramento	
ambientais	
Tabela 8.5 Lista de pontos amostrais de fauna terrestre da campanha d	
monitoramento da CGH Rincão da Ponte	
Tabela 8.6: Tabela de esforço amostral da fauna terrestre na CGH Rincão da Ponto	
Tabela 9.1: Georreferenciamento das espécies ameaçadas registradas no	
monitoramentos	
Tabela 10.1: Caracterização dos pontos de coleta da ictiofauna e localização 7	77
Tabela 10.2: Detalhamento técnico dos petrechos de pesca utilizados r	าด
monitoramento ictiofaunístico da área de influência da CGH	77
Tabela 10.3: Caracterização de diversidade, equitabilidade, riqueza e abundância. 7	78
Tabela 10.4: Lista de espécies da ictiofauna registradas nas áreas de influências o	ak
CGH	79
Tabela 10.5: Esforço amostral do táxon ictiofauna para o empreendimento	36
LISTA DE GRÁFICOS	
Gráfico 8.1: Frequência de ocorrência da avifauna registrada na área amostral o	40
empreendimento	
Gráfico 8.2: Estrutura trófica da avifauna registrada na área amostral d	
empreendimento.	
Gráfico 8.3: Hábitat preferencial da avifauna registrada na área amostral d	
•	
empreendimento	
Gráfico 8.5: Curva de acumulação de espécies calculada a partir do Past dos dado	
obtidos na CGH Rincão da Ponte.	
ODITIOS HA OCITINITO UAT OHIG	JU

Gráfico 8.6: Guildas tróficas das espécies registradas	62
Gráfico 8.7: Hábitos preferenciais das espécies registradas	63
Gráfico 8.8: Contato com as espécies registradas	69
Gráfico 10.1: Representatividade numérica e em biomassa das espécies cap	oturadas
na área de influência da CGH Rincão da Ponte	81
Gráfico 10.2: Índices ecológicos especiais da ictiofauna na área de influência	
Gráfico 10.3: Captura por Unidade de Esforço (CPUE) para malhadeiras obti	dos 83
LISTA DE QUADROS	
Quadro 13.1: Cronograma mensal das campanhas realizadas no empreen	

1 IDENTIFICAÇÃO

1.1 EMPREENDEDOR

RINCÃO DA PONTE ENERGIA LTDA.

CNPJ/MF nº 35.572.013/0001-10

Endereço: Faz. São Cristovão, s/n, Salto Fortaleza

CEP: 84.300-000 - Tibagi/PR

1.2 EMPRESA RESPONSÁVEL PELOS ESTUDOS

CONSTRUNÍVEL ENERGIAS RENOVÁVEIS LTDA.

CNPJ/MF nº 16.456.838/0001-24

Endereço: Rua Odílio Alves, nº 127 - Bairro Primo Tacca

CEP: 89820-000 - Xanxerê/SC Telefone (49) 3433-1770

1.3 EQUIPE TÉCNICA

Os programas de monitoramento ambiental da <u>Licença de Operação de</u> <u>Regularização</u> do empreendimento hidrelétrico, estão sob supervisão da equipe técnica a seguir:

PROFISSIONAL	ASSINATURA
Juliana Marli Baccin Bióloga CRBio 110570/09-D CTF IBAMA 7062655	Juliana Marli Bacan
Kariane Silva Lemes Bióloga CRBio 110655/09-D CTF IBAMA 7624932	
Gabriela Locatelli Engenheira Florestal CREA-SC 150682-0 CTF IBAMA 7055272	Gabriela Bacatelli
Mauricio Quoos Konzen Biólogo CRBio 118862/09-D CTF IBAMA 7201835	Administration of the second

As respectivas ARTs - Anotações de Responsabilidade Técnica, dos responsáveis pelos trabalhos de campo, estão apresentadas em anexo a este relatório.

1.4 EMPREENDIMENTO

O empreendimento hidrelétrico CGH Rincão da Ponte localiza-se no município de Tibagi - PR no Rio Fortaleza, sob as seguintes coordenadas:

Eixo do Barramento: Latitude: 24°26'24.33" S – Longitude: 50°17'7.75" O **Eixo da casa de força:** Latitude: 4°26'34.32" S – Longitude: 50°17'14.20" O

Para que todo processo de licenciamento do empreendimento viesse a ocorrer dentro nas normativas legais fez-se necessário a obtenção das seguintes autorizações:

- Licença Ambiental de Operação (LAO) Nº 36956;
- Solicitação de renovação de Licença Operação sob protocolo **nº 19.750.956-2** na data de 23/11/2022:
 - Autorização Ambiental para Monitoramento de Fauna (AUA) № 55769.

2 INTRODUÇÃO

O presente relatório contempla o resultado obtido durante as campanhas de Monitoramento Ambiental da Central Geradora Hidrelétrica Rincão da Ponte. Todos os programas foram elencados de acordo com a Licença de Operação de Regularização.

Este relatório contempla as atividades desenvolvidas no período de junho de 2022 a junho de 2023.

O objetivo principal da execução dos programas ambientais é de natureza compensatória, agindo de forma a mitigar os impactos previstos, porém é provável que ocorrerão algumas perdas ambientais, que obrigatoriamente serão compensadas com medidas para promover o equilíbrio sustentável do empreendimento em questão.

Dessa forma, a implementação dos programas visa reduzir os impactos sobre os diferentes meios: físico, biótico, e antrópico, visto que os impactos previstos foram previamente analisados e mensurados no PCA (Plano de Controle Ambiental) cabendo assim um acompanhamento e monitoramento de acordo com a operação da CGH.

Os relatórios de acompanhamento dos programas ambientais são importantes ferramentas para demonstrar os resultados da implantação de um empreendimento, auxiliando caso seja necessário, à tomada de medidas emergenciais, além de promover o controle das atividades no local, e consciência ambiental nos agentes envolvidos nas diferentes etapas de implantação da obra e operação.

É válido salientar que a periodicidade de execução dos Programas Ambientais é variável e específica para cada programa dentro do caráter de sazonalidade, sempre objetivando um monitoramento eficaz dos impactos advindos da implantação do empreendimento, bem como das medidas adotadas para sua mitigação ou minimização.

3 PROGRAMA DE GESTÃO E SUPERVISÃO AMBIENTAL

Para contribuir com a manutenção da qualidade ambiental da CGH Rincão da Ponte, e no atendimento das condicionantes estabelecidas na Licença Ambiental de Operação n° 36956, o Programa de Gestão e Supervisão Ambiental, apresenta

todas as medidas preventivas e mitigadoras que estão sendo implantadas no ordenamento das atividades na fase de operação, programando-as de forma a evitar ou reduzir os processos impactantes do empreendimento.

A gestão ambiental inicia-se nas fases iniciais do projeto, passando pela etapa de construção e continua ao longo da vida útil da usina; a fim de minimizar os efeitos negativos e maximizar os benefícios do empreendimento. A gestão ambiental também pode contribuir para melhorar o design e funcionalidade, contribuindo para a redução de seus custos globais, minimizando imprevistos, atenuando conflitos e ajudando na preservação do meio ambiente.

Ainda dentro do Programa de Gestão e Supervisão Ambiental procura-se assegurar que os programas ambientais sejam implantados de forma articulada, sem superposições nem paralelismos e com contribuições mútuas no que fosse pertinente.

Efetuando o acompanhamento direto e indireto, por sua articulação, pelo contato com os órgãos ambientais, e pela elaboração de relatórios, bem como, o planejamento de gestão por meio da análise dos conteúdos dos programas ambientais, objetivos, procedimentos metodológicos, ações previstas e cronogramas, visando à integração dos mesmos.

Este programa pode seguir até o recebimento dos primeiros resíduos, persistindo ao final do segundo ano de operação do empreendimento, para a avaliação da eficácia das técnicas utilizadas.

O programa de acompanhamento fotográfico periódico tem como principal desígnio registrar e assegurar que os programas e medidas mitigadoras estão sendo realizados de forma correta.

Para estas atividades não se justifica a execução de um plano específico, haja vista que os registros e relatórios fotográficos devem ser parte integrante de todo o sistema de implantação das novas estruturas do empreendimento.

3.1 ATIVIDADES DESENVOLVIDAS

O empreendimento encontra-se em operação contando com a LAO n° 36956 vigente até 04/01/2023, já tendo sido protocolada a solicitação de renovação na data de 23/11/2022 sob protocolo n° 19.751.956-2.

Abaixo segue o relatório fotográfico da situação atual do empreendimento.

Figura 3.1:Vista aérea do barramento do empreendimento. Fonte: Construnível, 2023.

Figura 3.2: Vista aérea da casa de força do empreendimento. Fonte: Construnível, 2023.

Figura 3.3: Vista dos condutos forçados do empreendimento. Fonte: Construnível, 2023.

EMPREENDIMENTO LICENCIADO PELO IAP
DE ACORDO COM AS NORMAS DE PROTEÇÃO
E CONSERVAÇÃO AMBIENTAL

CGH RINCÃO DA PONTE
RINCAO DA PONTE ENERGIA LTDA
Licença de Operação - LO - n° 35950

Figura 3.4: Placa com informações do licenciamento do empreendimento. Fonte: Construnível, 2023.

Figura 3.5: Central de resíduos. Fonte: Construnível, 2023.

Figura 3.6: Recuperação da área do empreendimento. Fonte: Construnível, 2023.

Figura 3.7: Recuperação da área do empreendimento. Fonte: Construnível, 2023.

4 PROGRAMA DE COMUNICAÇÃO SOCIAL E EDUCAÇÃO AMBIENTAL

O programa de Comunicação Social e Educação Ambiental tem por finalidade o desenvolvimento de campanhas de esclarecimento, sobre a operação do empreendimento, buscando então um canal de comunicação entre o empreendimento e a comunidade no entorno. Este programa visa levar à população uma conscientização ambiental no todo.

4.1 OBJETIVOS

Este programa busca:

- Estabelecer um relacionamento amigável entre o empreendimento e as comunidades afetadas;
- Desenvolver atividades educativas buscando a mudança de comportamento e a adoção de procedimentos adequados para o uso e manejo dos recursos ambientais;
- Promover a compreensão do ambiente e as relações dinâmicas entre os ecossistemas naturais e sistemas sociais, econômicos e culturais;
- Elaborar e produzir materiais institucionais, didáticos, informativos e de divulgação;
- Promover um melhor entendimento sobre educação ambiental, afim de que a população da região afetada interaja futuramente de maneira correta com o meio ambiente, proporcionando a sustentabilidade dos recursos naturais;
- Promover palestra para disseminação de informações sobre o empreendimento e o meio ambiente (Educação Ambiental), num caráter não formal e participativo, afim de que a toda a sociedade, tanto poder público, como órgãos legisladores e ambientais, escolas e a população afetada estejam presentes.

4.2 ATIVIDADES DESENVOLVIDAS

No período que compreende este relatório buscou-se informar os colaboradores e população residente do entorno sobre o andamento das atividades ambientais no empreendimento. Na oportunidade foram entregues folders, informando sobre a importância da preservação do meio ambiente, das doenças

transmitidas por vetores de zoonoses, dos cuidados com o encontro com escorpiões e sobre os programas ambientais que estão sendo realizados durante a fase de operação.

Figura 4.1: Entrega de folders a colaboradores.

Fonte: Construnível, 2022.

Figura 4.3: Entrega de folders a colaboradores. Fonte: Construnível, 2022.

Figura 4.5: Entrega de folders a colaboradores. Fonte: Construnível, 2022.

Figura 4.2: Entrega de folders a colaboradores.

Fonte: Construnível, 2022.

Figura 4.4: Entrega de folders a colaboradores.

Fonte: Construnível, 2022

Figura 4.6: Conversa com colaboradores. Fonte: Construnível, 2023.

VENENO

ASSIM COMO AS ARANHAS, OS ESCORPIÕES SÃO RESPONSÁVEIS POR VÁRIOS ACIDENTES. ELES UTILIZAM SEU FERRÃO, PRESENTE NA CAUDA PARA INJETAR O VENENO.

CUIDADOS

A melhor forma para evitar os acidentes é utilizar luvas ao mexer em entulhos no jardim e ao manusear folhas ou pedras.

ANIMAIS PEÇONHENTOS

Contato

CONSTRUNÍVEL ENERGIAS

Rua Odífio Alves, nº 136, Xanxerê (SC)
Fone: (49) 3433-1770 / (49) 9 9962 2372
construnivel@construnivelenergias.com.br
www.construnivelenergias.com.br

O PERIGO DOS ESCORPIÕES!

XANXERÊ - 2022

POSSUEM HÁBITOS NOTURNOS E DURANTE O DIA FICAM ESCONDIDOS

EM ENTULHOS, EMBAIXO DE PEDRAS OU CASCAS DE ÁRVORES.

NORMALMENTE OS ACIDENTES SÃO
CAUSADOS EM LIMPEZAS AO REDOR DO
QUINTAL, RETIRANDO FOLHAS E
ENTULHOS QUE POSSAM SERVIR COMO
ABRIGO PARA AS ESPÉCIES.

......

PRINCIPAIS ESPÉCIES

No Brasil podem ser encontradas três principais espécies causadoras de acidentes: o escorpião-amarelo, escorpião-preto (ou marrom) e escorpião do nordeste.

Escorpião amarelo

Escorpião preto

Figura 4.7: Modelo do *folder* informativo. Fonte: Construnível, 2022.

5 PROGRAMA DE MONITORAMENTO DA QUALIDADE DA ÁGUA SUPERFICIAL

A qualidade da água superficial é de importância em qualquer local, sendo condição primária para o desenvolvimento do aspecto socioeconômico, além de garantir a qualidade de vida. A redução da qualidade e quantidade da água caso possa ocorrer, geralmente é decorrente da redução de cobertura florestal, da degradação do solo e da concentração urbana e industrial, e pode gerar o comprometimento de seus usos múltiplos, além disso, a modificação da qualidade físico-química da água afeta o ecossistema aquático e as espécies a ele associadas.

O controle da qualidade da água é importante para identificar e comparar a situação da água em diferentes estados temporais, avaliando os momentos antes da implantação, durante e depois da operação do empreendimento, sendo necessário para definir as medidas compensatórias.

O programa permite o conhecimento e o acompanhamento das modificações qualitativas que possam comprometer a qualidade dos recursos hídricos superficiais influenciados pela implantação e operação do empreendimento, visando assegurar a adequação das medidas de manutenção da qualidade dos usos da água.

5.1 ATIVIDADES DESENVOLVIDAS

Durante os meses de junho de 2022 a junho de 2023 realizou-se coletas sistemáticas das amostras em campo para determinar as variáveis físicas, químicas e biológicas. Para tanto foram delimitadas 03 estações amostrais (Tabela 5.1), sendo (P01) a montante do barramento, (P02) o trecho de vazão reduzida e (P03) a jusante da casa de força. Para todas as amostragens de água os pontos se mantiveram os mesmos.

Tabela 5.1: Caracterização dos pontos da avaliação da qualidade de água, e localização.

PONTO	LOCALIZAÇÃO	COORD. GEOGRÁFICA	CARACTERÍSTICAS DO AMBIENTE
P1	Montante Barramento	572420.00 m E 7296910.00 m S	APP reduzida na margem direita e conservada na margem esquerda, substrato argiloso e ambiente lêntico.
P2	Trecho de Vazão Reduzida	572524.00 m E 7296614.00 m S	APP reduzida em ambas as margens, substrato rochoso e ambiente lótico.
P3	Jusante Casa de Força	572224.00 m E 7296545.00 m S	APP reduzida na margem direta e inexistente na margem esquerda, substrato rochoso e ambiente lótico.

As amostras de água foram coletadas nas estações amostrais conforme figura acima, o detalhamento em escala adequada localiza-se anexo a esse. Realizouse a coleta direta, utilizando-se de frascos estéreis, previamente preparados no laboratório terceirizado responsável pelas análises, sendo observadas as recomendações técnicas quanto aos volumes, material do frasco e procedimentos de conservação. Todos os frascos foram identificados previamente com etiquetas, constando nestas o nome da estação amostral, rótulo do parâmetro a ser analisado, data de coleta, bem como o método de conservação da amostra. As coletas foram realizadas e acondicionadas de acordo com a NBR 9897 e 9898 e encaminhadas ao laboratório

Em todos os pontos amostrais ocorreu a mensuração da transparência e temperatura *in situ*. As metodologias adotadas seguiram as recomendações do "Standart Methods For The Examination Of Water And Wastewater" (APHA-AWWA-WPCI, 2005).

5.2 RESULTADOS E DISCUSSÕES

Os ecossistemas aquáticos incorporam, ao longo do tempo, substâncias provenientes de causas naturais, sem nenhuma contribuição humana, em concentrações raramente elevadas e que, no entanto, podem afetar o comportamento químico da água e seus usos mais relevantes.

Entretanto, outras substâncias lançadas nos corpos d'água pela ação antrópica, em decorrência da ocupação e do uso do solo, resultam em sérios problemas de qualidade de água. Conhecer os processos físicos, químicos e biológicos auxiliam no gerenciamento integrado dos usos múltiplos do recurso hídrico, da qualidade de água uma ferramenta importante para subsidiar a elaboração de planos de manejo para o sistema (BARBOSA, 1994).

Na tabela a seguir são apresentados os resultados dos ensaios analíticos das variáveis analisadas e dos dados aferidos em campo. Além disso, exibe os limites estabelecidos pela resolução CONAMA 430/2011 que complementa e altera a Resolução 357/2005 para águas superficiais de Classe 2, os quais são utilizados como referência, as células destacadas apresentam-se fora dos limites estabelecidos pela legislação.

Tabela 5.2: Resultados dos parâmetros na avaliação da qualidade de água na área de influência da CGH Rincão da Ponte/PR - 1°, 2º e 3º Relatório.

	Pontos amostrais										
Donâmotro	1° RELATÓRIO 2° RELATÓRIO			3° RELATÓRIO			1	11-11-1-			
Parâmetros				Z KELATURIU			1° Campanha			Legislação*	Unidade
	P1	P2	P3	P1	P2	P3	P1	P2	P3		
Alcalinidade total	12,0	12,0	12,0	12,0	12,0	12,0	2,9	2,1	2,8	-	mg CaCO3/L
Clorofila a	4,7	4,7	4,7	4,7	4,7	4,7	0,3	0,30	0,27	30 μg/L	μg/L
Condutividade	26,2	24,1	25,1	21,6	20,82	20,51	27,3	19,25	27,0	-	(µS/cm)
Coliformes Termotolerantes	110,0	110,0	120,0	1000	800,0	300,0	400,0	400,0	2400	(NMP/100 ml)	UFC/100mL
DBO	2,79	2,79	2,79	2,79	2,79	2,79	2,4	2,4	2,4	5 mg/L	mg/L O2
DQO	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	-	(mg/L)
Fósforo Total	0,039	0,001	0,013	0,014	0,013	0,019	0,013	0,013	0,013	**	mg/L
Nitrato	0,6	0,0	0,5	0,6	0,5	0,4	1,3	1,1	1,2	≤ 10,0 mg N/L	mg NO3-/L
Nitrito	0,02	0,00	0,01	0,02	0,01	0,02	0,02	0,01	0,01	≤ 1,0 mg N/L	mg NO2-/L
Nitrogênio Kjeldahl	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	-	(mg/L)
Oxigênio dissolvido	3,7	9,7	9,9	8,9	9,1	9,0	8,6	8,6	8,5	> 5 mg/L	mg/L O2
рН	7,93	7,70	7,67	7,39	7,65	7,87	6,20	6,34	6,22	6 a 9	unidade
Sólidos suspensos	18,00	18,00	18,00	18,00	18,00	38,00	43,00	43,00	43,00	-	mg/L
Sólidos Totais	38,00	35,00	35,00	67,00	35,00	85,00	50,00	90,00	95,00	-	mg/L
Temperatura amostra	15,1	15,5	14,7	23,7	23,8	23,1	16,5	16,7	16,1	-	°C
Turbidez	9,5	3,3	3,3	13,3	9,6	22,6	22,7	25,3	23,2	≤ 100 NTU	NTU
Transparência (m)	0,30	1,30	0,29	0,58	0,84	0,29	0,65	0,52	0,28	-	-
Profundidade (m)	0,30	1,30	0,29	0,58	1,18	0,29	0,65	0,52	0,28	-	-

^{*} Legislação: CONAMA – Resolução 357/2005 – Água Doce Classe II – Artigo 15. ** Legislação: CONAMA - Resolução 357/2005 - Fosforo Total: ≤ 0,030mg/L em ambiente lêntico;

^{≤ 0,050}mg/L em ambientes intermediários; ≤ 0,1mg/L em ambiente lótico.

Tabela 5.3: Resultados dos parâmetros na avaliação da qualidade de água na área de influência da CGH Rincão da Ponte/PR - 3º e 4º Relatório.

Pontos amostrais											
Parâmetras	3° RELATÓRIO 4° REL				4° REL	LATÓRIO			– Legislação*	Unidade	
Parâmetros	2° Campanha		1° Campanha			2° Campanha					
	P1	P2	P3	P1	P2	P3	P1	P2	P3		
Alcalinidade total	2,9	2,0	2,7	2,0	4,6	3,1	6,12	4,08	0,56	-	mg CaCO3/L
Clorofila a	0,27	0,27	0,27	0,27	0,27	0,27	0,1	0,1	0,1	30 μg/L	μg/L
Condutividade	29,1	15,3	29,6	22,8	0,01	23,3	24,8	19,0	18,9	-	(µS/cm)
Coliformes Termotolerantes	280,0	700,0	250,0	200,0	330,0	200,0	13000	420,0	480,0	(NMP/100 ml)	UFC/100mL
DBO	2,4	2,4	2,4	2,4	2,4	2,4	2,0	2,0	2,0	5 mg/L	mg/L O2
DQO	50,0	50,0	50,0	50,0	50,0	50,0	5,0	5,0	5,0	-	(mg/L)
Fósforo Total	0,013	0,013	0,013	0,013	0,124	0,013	0,120	0,11	0,12	**	mg/L
Nitrato	0,5	0,5	0,5	0,53	0,53	0,54	0,96	0,43	0,47	≤ 10,0 mg N/L	mg NO3-/L
Nitrito	0,014	0,009	0,01	0,021	0,027	0,034	0,030	0,030	0,03	≤ 1,0 mg N/L	mg NO2-/L
Nitrogênio Kjeldahl	2,0	2,0	2,0	1,0	1,0	1,0	0,5	0,5	0,5	-	(mg/L)
Oxigênio dissolvido	7,9	9,1	8,4	7,4	8,5	8,2	5,54	6,05	5,30	> 5 mg/L	mg/L O2
рН	6,63	6,58	6,81	6,21	6,42	6,27	4,68	5,06	5,40	6 a 9	unidade
Sólidos suspensos	43,00	43,00	43,00	43,00	43,00	43,00	20	13,00	13,00	-	mg/L
Sólidos Totais	43,00	43,00	43,00	43,00	45,00	45,00	18	24,00	17,00	-	mg/L
Temperatura amostra	19,9	20,0	19,9	18,9	17,6	17,8	22,00	22,00	22,00	-	°C
Turbidez	12,1	12,1	24,8	6,4	13,7	9,5	4,22	1,9	8,95	≤ 100 NTU	NTU
Transparência (m)	0,33	0,21	0,16	0,5	0,28	0,4	0,85	0,8	0,33	-	-
Profundidade (m)	0,33	0,21	0,16	0,5	0,28	0,4	0,85	0,8	0,33	-	-

^{*} Legislação: CONAMA – Resolução 357/2005 – Água Doce Classe II – Artigo 15. ** Legislação: CONAMA - Resolução 357/2005 - Fosforo Total: ≤ 0,030mg/L em ambiente lêntico;

^{≤ 0,050}mg/L em ambientes intermediários; ≤ 0,1mg/L em ambiente lótico.

De acordo com a tabela acima pode-se perceber que os parâmetros que se encontram alterados são Coliformes Termotolerantes, Fósforo Total, Oxigênio Dissolvido e pH.

Segundo Oliveira et al. (2015) a alteração de Coliformes Termotolerantes pode ser ocasionada pelo descarte inadequado de esgoto e da falta de tratamento de água residuais, além da descarga de resíduos agrícolas, precipitação e escoamento superficial, poluição industrial e presença de animais domésticos ou silvestres com acesso ao rio.

Já o Fósforo Total pode ser alterado pela descarga de efluentes industriais e domésticos, agricultura e descarga de resíduos orgânicos (QUEVEDO; PAGANINI, 2009).

O parâmetro de Oxigênio Dissolvido é outro que sofre alterações pelas descargas de esgoto sem tratamento, visto que as água poluídas por esse componente apresentam baixa concentração de oxigênio dissolvido, pois o mesmo é consumido no processo de decomposição da matéria orgânica (ANA, [s.d.]).

A alteração de pH está atrelada a presença de ácidos ou bases na água relacionados a atividades geológicas na região, mudanças climáticas ou poluição por atividades humanas, como descarga de resíduos químicos e esgoto (LOPES; MAGALHÃES JR, 2017).

Nas seguintes campanhas a qualidade da água continuará a ser acompanhada, visando a visualização de possíveis poluidores na área do empreendimento.

5.2.1 Índice da qualidade da água "IQA"

O Índice de Qualidade da Água (IQA) é calculado a partir das variáveis físicas (temperatura, turbidez e resíduo total), químicas (pH, nitrogênio total, fósforo total, demanda bioquímica de oxigênio "DBO" e oxigênio dissolvido) e microbiológica (coliformes termotolerantes) que refletem, principalmente, a contaminação dos corpos hídricos causada pelo lançamento de esgoto doméstico e/ou lixiviação de agrotóxicos (CETESB, 2014). A partir do cálculo efetuado, pode-se determinar a qualidade das águas brutas, que é indicada pelo IQA, variando numa escala de 0 a 100, conforme tabela a seguir.

Quadro 5.1: Valores de classificação do corpo de água com base no cálculo do IQA (Cetesb).

dament of the control and control and again control and an extraction and the control and the									
Nível de qualidade	Faixa	Cor de referência							
Ótima	80 – 100	Azul							
Boa	52 – 79	Verde							
Aceitável / Regular	37 - 51	Amarela							
Ruim	20 - 36	Vermelha							
Péssima	0 -19	Preta							

A qualidade da água enquadrou-se como "boa" em todos os pontos das campanhas, exceto para ponto P1 da 2ª Campanha do 4º Relatório, o qual se enquadrou em "regular", como pode ser observado na tabela a seguir.

Tabela 5.4: Índice da qualidade de água (IQA) nos pontos amostrados na área de influência do

empreendimento hidrelétrico CGH Rincão da Ponte.										
PONTO	CLASSIFICAÇÃO									
1º Relatório										
P1	63	Boa								
P2	79	Boa								
P3	78	Boa								
	2º Relatório									
P1	70	Boa								
P2	71	Boa								
P3	72	Boa								
	3º Relatório									
	Campanha 01									
P1	71	Boa								
P2	71	Boa								
P3	64	Boa								
	Campanha 02									
P1	74	Boa								
P2	71	Boa								
P3	74	Boa								
	4º Relatório									
	Campanha 01									
P1	75	Boa								
P2	71	Boa								
P3	75	Boa								
	Campanha 02									
P1	48	Regular								
P2	62	Boa								
P3	65	Boa								

5.2.2 Índice de Estado Trófico "IET"

Ainda foi calculado o **Índice do Estado Trófico –** IET tem como finalidade amostrar os diferentes graus de trofia, avaliando a qualidade da água quanto ao enriquecimento por nutrientes e seu efeito relacionado ao crescimento excessivo das algas ou o potencial de crescimento de macrófitas aquáticas. Para o cálculo foram aplicadas duas variáveis, clorofila-a e fósforo total, segundo Lamparelli (2004).

Os limites estabelecidos para as diferentes classes de trofia em rios e reservatórios estão descritos na tabela a seguir.

Quadro 5.2: Classificação das águas em função dos valores do IET.

Classif	icação do Estado	Trófico Segundo	o Índice de Carlson	Modificado
Estado Trófico	Critério	Secchi – S (m)	P – Total (mg/m3)	Clorofila-A (mg/m3)
Ultraoligotrófico	IET ≤ 47	S ≥ 2,4	P≤8	Cl-a ≤ 1,17
Oligotrófico	47 < IER ≤ 52	2,4 > S ≥ 1,7	8 < P ≤ 19	1,17 <cl-a 3,24<="" th="" ≤=""></cl-a>
Mesotrófico	52 < IET ≤ 59	1,7 > S ≥ 1,1	19 < P ≤ 52	3,24 <cl-a 11,03<="" th="" ≤=""></cl-a>
Eutrófico	59 < IET ≤ 63	1,1 > S ≥ 0,8	52 < P ≤ 120	11,03 <cl-a 30,55<="" th="" ≤=""></cl-a>
Supereutrófico	63 < IET ≤ 67	$0.8 > S \ge 0.6$	120 < P ≤ 233	30,55 <cl-a 69,05<="" th="" ≤=""></cl-a>
Hipereutrófico	IET > 67	S < 0,6	P > 233	Cl-a> 69,05

Quadro 5.3 Caracterização das águas em função dos valores do IET.

Estado Trófico	Especificação
Ultraoligotrófico	Corpos d'água limpos, de produtividade muito baixa e concentrações insignificantes de nutrientes que não acarretam em prejuízos aos usos da água.
Oligotrófico	Corpos de água limpos, de baixa produtividade, em que não ocorrem interferências indesejáveis sobre os usos da água.
Mesotrófico	Corpos de água com produtividade intermediária, com possíveis implicações sobre a qualidade da água, mas em níveis aceitáveis, na maioria dos casos.
Eutrófico	Corpos de água com alta produtividade em relação às condições naturais, de baixa transparência, em geral afetados por atividades antrópicas, em que ocorrem alterações indesejáveis de qualidade na água e interferências nos seus usos múltiplos.
Hipereutrófico	Corpos de água afetados significativamente pelas elevadas concentrações de matéria orgânica e nutrientes, com comprometimento acentuado em seus usos, podendo, inclusive, estarem associados a episódios de florações de algas e de mortandade de peixes e causar consequências indesejáveis sobre as atividades pecuárias nas regiões ribeirinhas.

Os índices de estado trófico para os relatórios enquadram-se como:

- 1º Relatório: "Mesotrófico" para os pontos P1 e P3 e "Oligotrófico";
- 2º Relatório: "Mesotrófico" para todos os pontos;
- 3º Relatório: "Ultraoligotrófico" para todos os pontos das duas campanhas;

 4º Relatório: "Ultraoligotrófico" para os P1 e P3 da 1ª Campanha e todos da 2ª Campanha, e "Oligotrófico" para P2 da 1ª Campanha.

Tabela 5.5: Índice de estado trófico (IET) nos pontos amostrados para as campanhas realizadas na área de influência do empreendimento hidrelétrico CGH Rincão da Ponte

PONTO	IET	CLASSIFICAÇÃO							
	1º Relatório								
P1	57,61	Mesotrófico							
P2	48,10	Oligotrófico							
P3	54,76	Mesotrófico							
	2º Relatório								
P1	54,95	Mesotrófico							
P2	54,76	Mesotrófico							
P3	55,74	Mesotrófico							
3º Relatório									
	Campanha 01								
P1	42,39	Ultraoligotrófico							
P2	42,85	Ultraoligotrófico							
P3	42,39	Ultraoligotrófico							
	Campanha 02								
P1	42,39	Ultraoligotrófico							
P2	42,39	Ultraoligotrófico							
P3	42,39	Ultraoligotrófico							
	4º Relatório								
	Campanha 01								
P1	42,39	Ultraoligotrófico							
P2	48,25	Oligotrófico							
P3	42,39	Ultraoligotrófico							
	Campanha 02								
P1	43,87	Ultraoligotrófico							
P2	43,64	Ultraoligotrófico							
P3	43,87	Ultraoligotrófico							

5.3 COMUNIDADES AQUÁTICAS: FITOPLÂNCTON, ZOOPLÂNCTON E ZOOBENTOS

5.4 METODOLOGIAS DE COLETA

Após a apresentação do segundo relatório ao órgão ambiental, o mesmo fora analisado e nos encaminhado o oficio nº 449/2021/IAT/DILIO/GELI/DLE, onde solicita ajustes na metodologia de amostragem de invertebrados aquáticos, dessa forma o esforço amostral foi aumentado de um ponto amostral para 03, contemplando montante barramento (P01), trecho de vazão reduzida (P02) e jusante casa de força (P03).

Fitoplâncton: Para a análise quantitativa da comunidade foram empregados arrastos horizontais com rede de abertura de malha de 20 μm, sendo o material acondicionado em frascos específicos e armazenados em caixa térmica com gelo. Os organismos encontrados são encaminhados para laboratórios especializados na identificação das espécies ao menor nível taxonômico possível.

Zooplâncton: Foram empregados arrastos verticais, para a análise quantitativa. As amostras são filtradas em rede com abertura de malha de 68 µm sendo o material acondicionado em frascos específicos e armazenados em caixa térmica com gelo. A identificação taxonômica dos organismos é realizada até menor nível taxonômico possível.

Zoobentos: Para o estudo foi utilizado a rede "D" para coleta com o método "kick sampling". A malha utilizada é de 0,50 mm, após a coleta das amostras, o material será transferido em frascos plásticos, estes, fornecidos pelo laboratório, devidamente identificados, e conservados em formalina 4%, sendo armazenado em caixas com gelo para posteriormente serem encaminhados ao laboratório para identificação taxonômica.

5.5 RESULTADOS E DISCUSSÕES

> Fitoplâncton

Foram identificados três filos, sendo eles Bacillariophyta, Chlorophyceae e Zygnomephyceae, conforme apresentado nas tabelas abaixo.

Tabela 5.6: Resultado das análises de fitoplâncton - BAR (P01)

		•	3º Relatório				4º Relatório			
NO Grupo Fitanianatânica		Análise Qualitativa	Análise Quantitativa 1 ^a Campanha		Análise Quantitativa 2 ^a Campanha		Análise Quantitativa 1 ^a Campanha		Análise Quantitativa 2 ^a Campanha	
Nº	Nº Grupo Fitoplanctônico ·	Táxon	Nº Células	Nº Indivíduos	Nº Células	Nº Indivíduos	Nº Células	Nº Indivíduos	N⁰ Células	Nº Indivíduos
1	Bacillariophyta	Navicula cf. jacobii			0	0				
2	<u> </u>	Ulnaria ulna			0	0				

		Análise Qualitativa		3º Relatório				4º Relatório		
				Análise Quantitativa 1 ^a Campanha		Análise Quantitativa 2 ^a Campanha		Análise Quantitativa 1 ^a Campanha		Análise Quantitativa 2 ^a Campanha
Nº Grupo Fitoplanctônico -	ctonico —	Táxon	Nº Células	Nº Indivíduos						
3	F	Frustulia saxonica			1	11				
4	٨	lavicula cf. antonii			1	11				
	TOTAL		-	-	2	22	-	-	<	1

Tabela 5.7: Resultado das análises de fitoplâncton - TVR (P02)

rab	ela 5.7: Resultado das	analises de fitoplancto	n – I V	K (PU	<u> </u>					
				3º Re	latório			4º Rel	atório	
		Análise Qualitativa	Análise Quant. 1 ^a Campanha		Análise Quant. 2 ^a Campanha		Análise Quant. 1 ^a Campanha		Análise Quant. 2 ^a Campanha	
Nº	Grupo Fitoplanctônico -	Táxon	Nº Células	Nº Indivíduos						
1		Surirella tenera	0	0						
2		Ulnaria ulna	1	11			1	5		
3		Surirella angusta	0	0						
4		Gomphonema sp.	1	11						
5	Bacillariophyta	Nitzschia palea					0	0		
6	Baomanophyta	Eunotia tridentula					0	0		
7		Navicula cryptocephala					1	5		
8		Achnanthidium sp.					1	5		
9		Aulacoseira ambigua					1	5		
10		<i>Ulnaria</i> sp.							-	0,2
11	Chlorophyceae	<i>Treubaria</i> sp.			1	2				
12	Zygnomephyceae	Closterium sp.							-	0,2
	TOTA	AL	2	22	1	2	4	20	-	0,4

Tabela 5.8: Resultado das análises de fitoplâncton - CF (P03)

				3º Relatório				4º Relatório		
NO Crupa Fitanianatânias		Análise Qualitativa	Análise Quant. 1 ^a Campanha		Análise Quant. 2 ^a Campanha		Análise Quant. 1 ^a Campanha		Análise Quant. 2 ^a Campanha	
Nº	Grupo Fitoplanctônico	Táxon	Nº Células	Nº Indivíduos	Nº Células	Nº Indivíduos	Nº Células	Nº Indivíduos	N⁰ Células	Nº Indivíduos
1	Chlorophycae	Tetradesmus lagerheimii			1	5				
	тот	AL	-	-	1	5	-	-	<	1

De acordo com a resolução 357/05 do CONAMA os valores para densidade de cianobactérias, devem ser até 50.000 cel/ml ou 5 mm³/l para classe 2.

A diversidade de espécies de algas microscópicas do fitoplâncton é característica de uma série de fatores dentre os quais aplica se as condições ambientais locais. De maneira geral, quanto maior a diversidade melhor a qualidade do efluente e quanto menor a diversidade menor pior a qualidade do efluente, pois há maior concentração de substratos orgânicos (BRANCO, 1998).

O filo predominante foi o Bacillariophyta, conhecido também como diatomáceas. No estado do Paraná, o grupo é um dos principais representantes de fitoplâncton em águas marinhas neríticas e estuarinas. Devido a essa importância, a taxonomia das diatomáceas é bem estudada no Paraná, representando uma exceção quando comparada com outras regiões do Brasil (PROCOPIAK *et al.*, 2006).

> Zooplâncton

A comunidade de zooplânctons é facilmente afetada pelas mudanças no meio em que está inserida. Segundo Silva *et al.* (2020), através da diminuição do nível da água que ocorrem nos reservatórios, eventos de seca afetam as características limnológicas, promovendo variações no oxigênio dissolvido e pH, aumento da condutividade e alcalinidade, aumento da concentração de nutrientes, diminuição da zona eufótica e aumento da biomassa algal. E esse conjunto de fatores são refletidas pelo zooplâncton, sendo observadas em seus atributos ecológicos.

Após coleta dos materiais e análise do laboratório, 04 táxons para as coletas realizadas, conforme tabelas a seguir.

Tabela 5.9: Resultado das análises de zooplâncton - BAR (P01)

			3º Rel	atório	4º Relatório		
Nº	Grupo Zooplanctônico	Análise Qualitativa Táxon	Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha	Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha	
1	Amoebozoa	- Difflugia				1500	
2	Nemate	óide				500	
	TOTAL		-	<1	-	2000	

Tabela 5.10: Resultado das análises de zooplâncton - TVR (P02)

	Grupo Zooplanctônico		3º Rel	atório	4º Relatório		
Nº		Análise Qualitativa	Análise Quantitativa	Análise Quantitativa	Análise Quantitativa	Análise Quantitativa	
		Táxon	1 ^a Campanha	2ª Campanha	1 ^a Campanha	2 ^a Campanha	
1	Rotifera	Euchlanis dilatata	1000				
	TOTAL		1000	<1	<1	<1	

Tabela 5.11: Resultado das análises de zooplâncton - CF(P03)

			3º Rel	atório	4º Relatório		
Nº	Grupo Zooplanctônico	Análise Qualitativa	Análise Quantitativa	Análise Quantitativa 2ª	Análise Quantitativa	Análise Quantitativa 2ª	
		Táxon	Campanha	Campanha	Campanha	Campanha	
1	Amoebozoa -	Dufflugia				1000	
	TOTAL		-	<1	-	1000	

> Zoobentos

Após coleta dos materiais e análise do laboratório, foi identificado um resultado de dois grupos de zoobentos no ponto do TVR, nos pontos de BAR e CF o resultado obtido foi de <1, conforme tabelas a baixo.

Tabela 5.12: Resultado das análises de zooplâncton - BAR (P01)

		3º Re	latório	4º Relatório		
Nº	Classificação dos organismos	Análise Quantitativa 1 ^a	Análise Quantitativa 2 ^a	Análise Quantitativa 1 ^a	Análise Quantitativa 2 ^a	
		Campanha	Campanha	Campanha	Campanha	
	TOTAL	-	<1	-	<1	

Tabela 5.13: Resultado das análises de zooplâncton - TVR (P02)

		3º Re	latório	4º Relatório		
Nº	Classificação dos organismos	Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha	Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha	

¹ Gerromorpha Gerridae 15

	Classificação dos organismos		3º Relatório		4º Relatório	
Nº			Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha	Análise Quantitativa 1 ^a Campanha	Análise Quantitativa 2 ^a Campanha
2	Ordem Tubificida	Família Naidedae				13
TOTAL			<1	15	<1	13

Tabela 5.14: Resultado das análises de zooplâncton - CF(P03)

	3º Relatório		4º Relatório	
	Análise	Análise	Análise	Análise
Classificação dos organismos	Quantitativa	Quantitativa	Quantitativa	Quantitativa
	1 ^a	2 ^a	1 ^a	2 ^a
	Campanha	Campanha	Campanha	Campanha
TOTAL	-	<1	-	<1

As alterações na qualidade da água, resultante de processos naturais ou antrópicas, manifestam-se na biodiversidade aquática, em função da alteração físico, químico e dinâmica estrutural das comunidades biológicas; macro invertebrados bentônicos, são os que melhore respondem as condições ambientais, notadamente ambientes alterados demonstram espécies típicas, evidenciando a qualidade da água e saúde do ecossistema (MATUSUMARA-TUNDISI, 1999; CALLISTO *et al.*, 2001; SOUZA, 2001).

5.6 CONSIDERAÇÕES FINAIS

Através dos índices apresentados a água do rio Fortaleza se encontra com qualidade boa, não tendo muitas interferências antrópicas em sua produtividade. Apesar disto, pode-se perceber parâmetros alterados nas campanhas realizadas, desse modo o acompanhamento da qualidade da água do rio na área de influência do empreendimento terá continuidade, visando observar fatores que influenciem na alteração destes parâmetros.

A coleta de invertebrados terá continuidade nas campanhas conseguintes, buscando um aumento de resultados destes grupos.

Todavia os resultados obtidos nos relatórios encontram-se dentro dos parâmetros de acordo com a Resolução CONAMA 357/2005.

5.7 RELATÓRIO FOTOGRÁFICO

Figura 5.1: Aferição da profundidade com disco de Secchi – 4º Relatório. Fonte: Construnível, 2022.

Figura 5.2: Coleta de água – 4º Relatório. Fonte: Construnível, 2022.

Figura 5.3: Coleta com rede Fitoplâncton – 4º Relatório.

Fonte: Construnível, 2022.

Figura 5.4: Coleta de Fitoplâncton – 4º Relatório.

12/04/2023 07:01

Figura 5.5: Coleta de água – 4º Relatório. Fonte: Construnível, 2023.

Figura 5.6: Coleta de água – 4º Relatório. Fonte: Construnível, 2023.

Figura 5.7: Coleta com rede Fitoplâncton – 4º Relatório.

Fonte: Construnível, 2023.

Figura 5.8: Aferição da temperatura – 4º Relatório.

Fonte: Construnível, 2023.

5.8 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

O monitoramento da qualidade da água do Rio Fortaleza, será realizado nos mesmos pontos amostrais da atual campanha, observando alterações na qualidade da água e seus agentes poluidores.

6 PLANO DE MONITORAMENTO DE EROSÕES E ASSOREAMENTO

Os processos erosivos referem-se a retirada, remoção e transporte de partículas de solo de uma determinada área, que quando ocorrem de forma descontrolada, podem acarretar em prejuízos ao meio ambiente. O monitoramento dos processos erosivos e de assoreamento constitui um programa de extrema importância, através desta atividade é possível avaliar os focos com antecedência e aplicar as medidas de mitigação adequadas.

6.1 OBJETIVOS

Este programa visa monitorar os taludes do empreendimento, podendo assim garantir a efetiva recuperação e estabilização dessas áreas.

6.2 ATIVIDADES DESENVOLVIDAS

Durante o período que compreende o presente relatório foram realizadas vistorias na área do empreendimento a fim de verificar possíveis focos de instabilidade. Não houve a necessidade de aplicação de técnicas de recuperação e a vegetação dos taludes encontra-se desenvolvida.

O relatório fotográfico abaixo demonstra a condição dos taludes na CGH Rincão da Ponte.

Figura 6.1: Taludes ao longo da obra da CGH Rincão da Ponte. Fonte: Construnível, 2023.

Figura 6.2: Vista aérea dos taludes ao longo do canal adutor. Fonte: Construnível, 2023.

Figura 6.3: Vista aérea dos taludes ao longo do canal adutor. Fonte: Construnível, 2023.

6.3 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

Para a próxima campanha será dado continuidade ao monitoramento das áreas, a fim de identificar e caracterizar as áreas suscetíveis ou com foco erosivo e fazer toda a recuperação necessária.

7 PROGRAMA DE RECUPERAÇÃO DE ÁREAS DEGRADADAS

O Programa de Recuperação de Áreas Degradadas busca minimizar os efeitos negativos causados durante a fase de regularização do empreendimento. A efetiva execução deste programa visa recuperar as áreas que tiveram o uso do solo modificado.

7.1 OBJETIVO

A recuperação das áreas alteradas tem como objetivo minimizar os efeitos negativos resultantes das atividades de regularização do empreendimento, bem como controlar os processos erosivos e a degradação ambiental, além de reintegrar estes locais a paisagem local.

7.2 ATIVIDADES REALIZADAS

Durante o período que compreende este relatório não foram necessárias atividades específicas para a recuperação das áreas. Durante as visitas realizadas foi possível visualizar o pleno desenvolvimento da cobertura vegetal nas áreas do empreendimento. Conforme demonstrado em relatórios anteriores foram executadas ações de plantio de leivas de grama, assim como semeadura de outras espécies de gramíneas.

A partir do relatório fotográfico apresentado abaixo, visualiza-se a efetiva recuperação das áreas no entorno do empreendimento, sendo que os pontos que se encontram sem cobertura vegetal referem-se aos acessos locais.

Figura 7.1: Vista aérea (drone) das áreas do empreendimento devidamente recuperadas. Fonte: Construnível, 2023.

Figura 7.2: Vista aérea (drone) das áreas do empreendimento devidamente recuperadas. Fonte: Construnível, 2023.

Figura 7.3: Vista aérea (drone) das áreas do empreendimento devidamente recuperadas. Fonte: Construnível, 2023.

Figura 7.4: Vista aérea (drone) das áreas do empreendimento devidamente recuperadas. Fonte: Construnível, 2023.

7.1 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

Para a próxima campanha será dado continuidade ao monitoramento das áreas. Caso se faça necessários serão desenvolvidas novas atividades de recuperação.

8 PROGRAMA DE MONITORAMENTO DA FAUNA TERRESTRE

Conforme aprovado na Autorização Ambiental para Manejo de Fauna de nº 55769, as campanhas de monitoramento de fauna são de periodicidade trimestrais, com relatórios anuais.

O monitoramento da fauna que compreende o relatório apresentará os dados dos quatro relatórios realizados na fase de licença de operação de regularização.

Foram monitorados pontos pré-determinados para os diferentes grupos de fauna, sendo localizados na área do barramento, trecho do canal adutor e casa de força. Todos os grupos receberam os esforços amostrais de acordo com a metodologia determinada.

8.1 AVIFAUNA

8.1.1 Métodos

O levantamento ocorreu no período diurno, nas primeiras horas da manhã e nas últimas horas da tarde (06h às 10h; 16h às 18h). Além disso, foram realizados transectos noturnos para registros de espécies que possuem estes hábitos (19h às 21h), totalizando 08 horas/dia, por um período de 04 dias/semestral, totalizando 32 horas/campo/homem com frequência semestral, perfazendo 64 horas/ano, além de registros esporádicos durante as visitas técnicas.

Para o monitoramento da avifauna do projeto CGH foram aplicados alguns métodos qualitativos principais, descritos a seguir:

PONTOS DE ESCUTA E OBSERVAÇÃO: Para amostragem em cada ponto foi determinado um percurso padronizado onde eram estabelecidos pontos de escuta equidistantes cerca de 200 m, visando evitar a sobreposição de espécies amostradas. Foram dedicados 10 minutos de parada em cada ponto de escuta, buscando identificar e mensurar os indivíduos ali visualizados ou escutados, desde que situados dentro de um raio de até 50 metros do pesquisador.

TRANSECTOS: Este método consistiu em realizar um percurso padronizado com o auxílio de binóculos e gravador para verificação de vocalizações duvidosas, registrando as espécies observadas. As espécies foram documentadas

fotograficamente com o objetivo de material comprobatório da ocorrência de determinados táxons importantes no local.

Wilson e Macarthur (1967) cunharam o termo "Seleção r" e "Seleção K" mostrando que as espécies podem apresentar dois tipos de seleção natural, os "r-estrategistas" que são aqueles que investem energia em quantidade (alta fecundidade e desenvolvimento rápido) e os "K-estrategistas" que são aqueles que investem mais energia em qualidade (fecundidade mais baixa, desenvolvimento lento e maior capacidade competitiva). De acordo com Pianka (1970), nenhuma espécie é totalmente r ou K, encontram-se todas dentro de um r-K continuum. Portanto, verificando as características gerais da avifauna, bem como as características das espécies encontradas, seguindo alguns critérios estabelecidos por este, considera-se aqui todas as aves como K-estrategistas.

Para as classes de tamanho, utilizou-se informações de Sick (1997) e o guia de campo Avis Brasilis de Sigrist (2009). As aves registradas foram classificadas em pequeno porte - PP (até 15 cm), médio porte - MP (entre 15 e 50 cm) e grande porte - GP (acima de 50 cm). As espécies também foram classificadas de acordo com sua capacidade de deslocamento, como baixa capacidade de deslocamento - B (aves residentes que normalmente se deslocam dentro da sua área de vivência), capacidade de deslocamento mediana - M (aves que realizam algum tipo de migração dentro do território nacional) e alta capacidade de deslocamento - A (aves que realizam migrações continentais ou para fora do território nacional), seguindo a Lista Comentada das Aves do Brasil (PACHECO *et al.*, 2021).

Para análises estatísticas utilizou-se o cálculo da frequência de ocorrência. Cruzando essas análises com revisões de literatura é possível determinar o estado de conservação dos ambientes amostrados no que se refere à sua avifauna. Para realização desta análise foi usado o cálculo abaixo:

$$FO = \frac{Ndi}{Nta}X100$$

Onde: FO (frequência de ocorrência); Ndi (número de dias que cada espécie foi registrada); Nta (número total de dias de amostragem).

E foi considerado: 0 - 12,5% (Rara); 12,6 - 50% (Ocasional); 51 - 87,5% (Frequente); 87,6 - 100% (Muito Frequente).

Tendo como base a literatura e as observações em campo, será realizada a divisão da avifauna em guildas tróficas e hábitats preferenciais, com o objetivo de verificar se espécies generalistas ou especialistas que estão explorando os ambientes amostrados, desta forma sendo possível realizar uma análise aprofundada da situação atual do ambiente do empreendimento e seus futuros impactos.

8.1.2 Resultados e Discussão

Através dos métodos aplicados, foram registradas 86 espécies, pertencentes a 20 ordens e 36 famílias.

Comparando as ordens registradas, observou-se que a Passeriformes foi a que mais apresentou espécies, com o total de 47, representando 54,65% dos registros. As famílias que apresentaram maiores registros foram Tyrannidae, com 15 espécies, e Thraupidae, com 09 espécies.

A tabela a seguir, apresenta a lista de espécies registradas durante os monitoramentos da CGH Rincão da Ponte.

Tabela 8.1: Lista de espécies da avifauna registradas nas áreas de influência da CGH.

Ordem/Família/Espécie	cies da avitauna registradas Nome Popular	St	atus de servaç	е	1º Relatório	Relatório		Relatório	Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	, FO%	ID Fotográfico
		IUCN	BR	PR		.,	(-)	7	Camp.			۵	Ň					₽
Anseriformes Anatidae																		
¹Amazonetta brasiliensis	ananaí	LC	-	-			Х		1	K	MP	М	m	LBR	V	oni	Ra	
Galliformes Cracidae																		
¹ Penelope obscura	jacuguaçu	LC	-	-	Х	Х		х	3	K	MP	М	m	BOR	av	fru	Fr	
Columbiformes Columbidae																		
^{1,3} Columbina talpacoti	rolinha-roxa	LC	-	-	х	Х	Х	х	4	K	PP	В	b	AA	V	gra	Mf	
^{1,3} Columbina picui	rolinha-picuí	LC	-	-	Х				1	K	PP	В	b	BOR	V	gra	Ra	
¹ Patagioenas picazuro	asa-branca	LC	-	-	Х	Х	Х	Х	4	K	MP	В	m	FLO	V	gra	Mf	
¹ Leptotila verreauxi	juriti-pupu	LC	-	-		Х	Х	Х	3	K	PP	В	m	FLO	а	gra	Fr	
^{1,3} Zenaida auriculata	avoante	LC	-	-	X	Х	Х	Х	4	K	PP	M	b	BOR	V	gra	Mf	
Cuculiformes Cuculidae																		
¹Tapera naevia	saci	LC	-	-				х	1	K	MP	В	b	AA	а	ins	Ra	
¹ Piaya cayana	alma-de-gato	LC	-	-			х		1	K	MP	В	b	BOR	av	ins	Ra	
¹Crotophaga ani	anu-preto	LC	-	-	Х	х	х	Х	4	K	MP	В	b	LBR	av	car	Mf	
¹Guira guira	anu-branco	LC	-	-	Х	х			2	K	MP	В	b	AA	av	car	Oc	
Caprimulgiformes Caprimulgidae																		
¹ Nyctibius albicollis	bacurau	LC	-	-			Х		1	K	MP	В	b	BOR	V	ins	Ra	
Apodiformes Trochilidae																		

Ordem/Família/Espécie	Nome Popular	Con	atus do	ão	1º Relatório	2º Relatório	3º Relatório	4º Relatório	Camp. Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	F0%	ID Fotográfico
		IUCN	BR	PR														
¹ Chlorostilbon lucidus	besourinho-de-bico-vermelho	LC	-	-		Х			1	K	PP	В	m	AA	V	nec	Ra	
Gruiformes Rallidae																		
*Aramides saracura	saracura-do-mato	LC	-	-			Χ	Х	2	K	MP	В	b	FLO	V	oni	Oc	
Charadriiformes Charadriidae																		
^{1,3} Vanellus chilensis	quero-quero	LC	-	-	х	х	Х	х	4	K	MP	М	b	AA	av	car	Mf	
Suliformes Phalacrocoracidae																		
¹ Nannopterum brasilianum	biguá	LC	-	-				х	1	K	GP	М	m	LBR	V	car	Ra	
Pelecaniformes Ardeidae	•																	
² Butorides striata	socozinho	LC	_	_		Х			1	K	MP	Α	m	LBR	V	car	Ra	
¹Syrigma sibilatrix	maria-faceira	LC	-	-				Х	1	K	MP	М	m	FLO	V	car	Ra	Fig.: 8.7
Threskiornithidae																		
¹ Theristicus caudatus	curicaca	LC	-	-	Х	х	Х	Х	4	K	MP	В	b	AA	av	oni	Mf	Fig.: 8.9
Cathartiformes Cathartidae																		
^{2,4} Cathartes aura	urubu-de-cabeça-vermelha	LC	-	-	х		Х	х	3	K	GP	М	b	FLO	V	det	Fr	
^{1,3,4} Coragyps atratus	urubu-de-cabeça-preta	LC	-	-	х	Х	Х	х	4	K	GP	В	b	AA	V	det	Mf	
Accipitriformes Accipitridae																		
¹ Heterospizias meridionalis	gavião-cabloco	LC	-	-				Х	1	K	GP	М	b	AA	V	car	Ra	Fig.: 8.12
¹ Rupornis magnirostris	gavião-carijó	LC	-	-			Х	х	2	K	MP	М	b	AA	V	car	Oc	
² lctinia plumbea	sovi	LC	-	-		X			1	K	MP	Α	m	BOR	av	ins	Ra	

Ordem/Família/Espécie	Nome Popular	Con	atus d servaç	ão	1º Relatório	2º Relatório	3º Relatório	4º Relatório	Camp. Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	F0%	ID Fotográfico
		IUCN	BR	PR					ပ									
Strigiformes																		
Tytonidae									_									
¹Tyto furcata	suindara	LC	-	-	Х		Х	Χ	3	K	MP	В	b	AA	av	car	Fr	Fig.: 8.5 - 8.10
Strigidae																	_	
¹Megascops atricapilla	corujinha-sapo	LC	-	-				Х	1	K	MP	В	b	FLO	а	ins	Ra	
¹Athene cunicularia	coruja-buraqueira	LC	-	-	Х	Х	Х	Χ	4	K	MP	В	b	AA	av	car	Mf	
Trogoniformes Trogonidae																		
¹Trogon surrucura	surucuá-variado	LC	-	-	Х	Х			2	K	MP	В	m	FLO	av	oni	Ос	
Coraciiformes Alcedinidae																		
¹ Chloroceryle amazona	martim-pescador-verde	LC	_	_			х		1	K	MP	В	b	LBR	٧	pis	Ra	
¹Megaceryle torquata	martim-pescador-grande	LC	_	_	х	х			2	K	MP	В	b	LBR	av	pis	Oc	
Galbuliformes Bucconidae	, 3																	
¹ Nystalus chacuru	joão-bobo	LC	-	-	Х		Х		2	K	MP	В	b	BOR	٧	ins	Oc	
Piciformes Ramphastidae	•																	
* Ramphastos dicolorus Picidae	tucano-de-bico-verde	LC	-	-			X		1	K	MP	M	m	BOR	а	oni	Ra	
¹Colaptes melanochloros	pica-pau-verde-barrado	LC	_	_	х				1	K	MP	В	b	BOR	٧	ins	Ra	
¹Colaptes campestris	pica-pau-do-campo	LC	-	-	х	Х	Х	Х	4	K	MP	В	b	AA	av	ins	Mf	
Falconiformes Falconidae	, ,																	
¹Caracara plancus	carcará	LC	-	-	Х	X	Х	х	4	K	GP	В	b	AA	٧	car	Mf	

Ordem/Família/Espécie	Nome Popular	Con	atus de servaç	ão	1º Relatório	2º Relatório	3º Relatório	4º Relatório	Camp. Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	F0%	ID Fotográfico
		IUCN	BR	PR														
¹Milvago chimachima	carrapateiro	LC	-	-	Х	Х	Х		3	K	MP	M	b	AA	av	ins	Fr	
¹ Falco sparverius	quiriquiri	LC	-	-		Х	Х		2	K	MP	В	b	AA	V	car	Ос	
¹Milvago chimango	chimango	LC	-	-	Х	Х		Χ	3	K	GP	В	b	AA	V	det	Fr	Fig.: 8.11
Psittaciformes Psittacidae																		
*Pyrrhura frontalis	tiriba-de-testa-vermelha	LC	-	-		Х			1	K	MP	M	m	FLO	av	fru	Ra	
Passeriformes																		
Furnariidae																		
^{1,3} Furnarius rufus	joão-de-barro	LC	-	-	х	х	х	х	4	K	PP	В	b	AA	av	ins	Mf	
¹Lochmias nematura	joão-porca	LC	-	-		х		х	2	K	PP	В	b	LBR	av	ins	Oc	
Tityridae	, .																	
¹ Pachyramphus validus	caneleiro-de-chapéu-preto	LC	_	_		х			1	K	MP	В	b	BOR	V	ins	Ra	
Tyrannidae																		
¹ Knipolegus lophotes	maria-preta-de-penacho	LC	_	-			Х		1	K	MP	В	b	AA	V	ins	Ra	
^{1,2} Colonia colonus	viuvinha	LC	_	-			Х		1	K	MP	Α	m	FLO	V	ins	Ra	
² Elaenia chiriquensis	chibum	LC	-	-		х			1	K	PP	В	b	AA	V	ins	Ra	
¹Serpophaga nigricans	joão-pobre	LC	-	-		х	х	Х	3	K	PP	В	b	LBR	٧	ins	Fr	
¹ Nengetus cinereus	primavera	LC	_	-		Х			1	K	MP	M	b	AA	V	oni	Ra	
² Empidonomus varius	peitica	LC	_	-		Х		х	2	K	MP	Α	b	BOR	V	ins	Oc	
¹Myiarchus swainsoni	irré	LC	_	-		Х			1	K	MP	В	b	BOR	V	oni	Ra	
² Tyrannus melancholicus	suiriri	LC	_	_		х	х	х	3	K	PP	Α	b	AA	av	ins	Fr	Fig.: 8.6
² Tyrannus savana	tesourinha	LC	-	-		х	х	х	3	K	PP	M	b	AA	V	fru	Fr	
¹Myiodynastes maculatus	bem-te-vi-rajado	LC	_	_		х			1	K	MP	M	m	BOR	av	ins	Ra	
^{1,3} Pitangus sulphuratus	bem-te-vi	LC	_	_	х	х	х	х	4	K	MP	В	b	AA	av	ins	Mf	
¹Megarynchus pitangua	neinei	LC	_	_	Х	Х	Х		3	K	PP	В	b	BOR	V	ins	Fr	

Ordem/Família/Espécie	Nome Popular	Con	atus d servaç		1º Relatório	2º Relatório	3º Relatório	4º Relatório	Camp. Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	F0%	ID Fotográfico
		IUCN	BR	PR														
¹Myiarchus ferox	maria-cavaleira	LC	-	-		Х			1	K	MP	Α	b	BOR	av	ins	Ra	
¹Xolmis velatus	noivinha-branca	LC	-	-				Χ	1	K	PP	M	m	AA	V	ins	Ra	
¹ Hirundiniea ferruginea Corvidae	gibão-de-couro	-	-	-				Х	1	K	MP	M	b	BOR	V	ins	Ra	
¹ Cyanocorax chrysops Hirundinidae	gralha-picaça	LC	-	-	Х		Х	Х	3	K	MP	В	m	FLO	av	oni	Fr	
¹ Pygochelidon cyanoleuca	andorinha-pequena-de-casa	LC	-	-	Х	Х		Х	3	K	PP	Α	а	AA	٧	ins	Fr	Fig.: 8.8
¹ Stelgidopteryx ruficollis	andorinha-serradora	LC	-	-				Х	1	K	PP	М	m	AA	٧	ins	Ra	
¹ Tachycineta albiventer Troglodytidae	andorinha-do-rio	LC	-	-				Х	1	K	PP	В	b	LBR	٧	ins	Ra	
¹ Troglodytes musculus Turdidae	corruíra	LC	-	-		X			1	K	PP	Α	m	BOR	av	ins	Ra	
¹ Turdus leucomelas	sabiá-barranco	LC	_	_			Х	Х	2	K	MP	В	b	BOR	а	oni	Oc	
¹Turdus rufiventris	sabiá-laranjeira	LC	_	_	Х	х	Х	Х	4	K	MP	В	b	BOR	av	oni	Mf	
¹ Turdus amaurochalinus Mimidae	sabiá-poca	LC	-	-				X	1	K	MP	В	b	FLO	av	oni	Ra	
¹ Mimus saturninus Motacillidae	sabiá-do-campo	LC	-	-	Х	X	х	х	4	K	MP	В	b	AA	av	oni	Mf	
² Anthus hellmayri	caminheiro-de-barriga- acanelada	LC			х			x	2	K	PP	Α	m	AA	٧	ins	Oc	
Parulidae																	_	
¹ Setophaga pitiayumi	mariquita	LC	-	-			Χ	X	2	K	PP	В	b	FLO	av	ins	Oc	
¹ Basileuterus culicivorus	pula-pula	LC	-	-	X			Х	2	K	PP	В	m	BOR	av	ins	Oc	
¹ Myiothlypis leucoblephara Icteridae	pula-pula-assobiador							Х	1	K	PP	В	b	BOR	а	ins	Ra	

Ordem/Família/Espécie	Nome Popular	Con	atus do servaç	ão	1º Relatório	2º Relatório	3º Relatório	4º Relatório	Camp. Observadas	Estratégia	Tamanho	Deslocamento	Sensibilidade	Ambiente	Contato	Guildas	F0%	ID Fotográfico
		IUCN	BR	PR														
² Leistes superciliaris	polícia-inglesa-do-sul	LC	-	-			Χ	Х	2	K	MP	В	b	AA	av	oni	Ос	
¹Cacicus haemorrhous	guaxe	LC	-	-	Х	Х	Х	Χ	4	K	MP	В	m	BOR	av	oni	Mf	
¹ Pseudoleistes guirahuro	chupim-do-brejo	LC	-	-	Χ		Х	Х	3	K	MP	В	m	LBR	V	gra	Fr	
^{1,3} Molothrus bonariensis	chupim	LC	-	-	Χ	Х	Χ		3	K	MP	В	b	AA	av	oni	Fr	
<u>Passerellidae</u>																		
² Zonotrichia capensis	tico-tico	LC	-	-	Х	Х	Х	Х	4	K	MP	В	b	AA	av	gra	Mf	
¹Ammodramus humeralis	tico-tico-do-campo	LC	-	-				Х	1	K	PP	В	b	AA	av	gra	Ra	
Thraupidae																		
¹Embernagra platensis	sabiá-do-banhado	LC	-	-		Х			1	K	MP	В	b	AA	av	ins	Ra	
¹Tangara sayaca	sanhaço-cinzento	LC	-	-		Х	Х	Х	3	K	PP	В	b	BOR	av	fru	Fr	
² Tersina viridis	saí-andorinha	LC	-	-		Х		Х	2	K	PP	Α	m	BOR	av	fru	Oc	
¹Saltator similis	trinca-ferro	LC	-	-	Х				1	K	MP	В	b	BOR	av	oni	Ra	
² Sporophila caerulescens	coleirinho	LC	-	-		х	Х		2	K	PP	M	b	AA	av	gra	Oc	
¹Sicalis flaveola	canário-da-terra	LC	-	-	Х	Χ	Х	Х	4	K	PP	В	b	AA	av	gra	Mf	
¹Volatinia jacarina	tiziu	LC	-	-		Х	Х	Х	3	K	PP	М	b	AA	av	gra	Fr	
¹ Coryphospingus cucullatus	tico-tico-rei	LC	-	-	Х				1	K	PP	В	b	BOR	av	oni	Ra	
¹ Tachyphonus coronatus	tiê-preto	LC	-	-				х	1	K	MP	В	b	BOR	٧	oni	Ra	
Fringillidae																		
¹Euphonia chlorotica	fim-fim	LC	-	-	Х				1	K	PP	В	b	FLO	av	fru	Ra	

Legenda: Status de Conservação: (LC) Pouco Preocupante; (CR) Criticamente em Perigo; (VU) vulnerável; (NT) Quase Ameaçado; (EN) Em Perigo; (-) Nada Consta. Ambiente: (BOR) Borda de Mata; (AA) Áreas Abertas; (FLO) Florestais; (LBR) Lagos, Rios e Banhados. Contato: (aud) Auditivo; (vis) Visual; (av) Auditivo/Visual. Guildas: (oni) Onívora; (ins) Insetívora; (fru) Frugívora; (gra) Granívora; (car) Carnívora; (pis) Piscívora; (det) Detritivoa; (nec) Nectarívora. Deslocamento e Sensibilidade: (B) Baixo; (M) Médio; (A) Alto. (FO) Frequência de Ocorrência: (Mf) Muito frequênte; (Fr) Frequente; (Oc) Ocasional; (Ra) Rara. Sensibilidade: (b) baixa; (m) média; (a) alta. Estratégia: (K) prole pequena com cuidado parental; (R) prole grande sem cuidado parental. Tamanho: (PP) Pequeno Porte; (MP) Médio Porte; (GP) Grande Porte. Indicações: (*) endêmica; (**) exótica; (1) residente; (2) migratória; (3) sinantrópica; (4) sentinela; (5) estenóica; (6) rara; (7) bioindicadora.

A análise da frequência de ocorrência demonstrou que espécies consideradas ocasionais e frequentes obtiveram a maior porcentagem, sendo representadas por 37 espécies Raras, 17 espécies Muito Frequente, 16 espécies Ocasionais, e 16 espécies Frequentes. Conforme o gráfico abaixo.

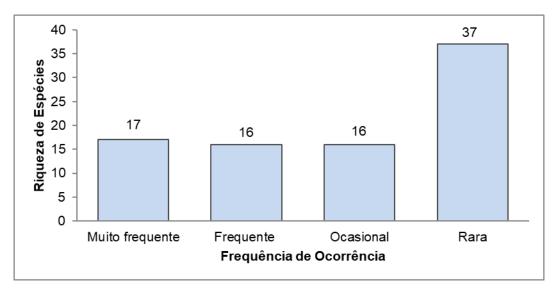


Gráfico 8.1: Frequência de ocorrência da avifauna registrada na área amostral do empreendimento.

A estruturação trófica da avifauna registrada foi composta pela sua maioria de espécies insetívoras, com 33 registros, e espécies onívoras, com 18 registros. A categoria de carnívora obteve 12 espécies, granívora 11 espécies e frugívora 06 espécies, seguidas em menor riqueza pelas demais categorias. Conforme o gráfico abaixo.

Espécies insetívoras e onívoras geralmente conseguem aproveitar os recursos fornecidos por ambientes alterados, já que habitats abertos associados a culturas agrícolas podem favorecer aves que se alimentam de insetos ou recursos diversos, tais como grãos e outras sementes, portanto, a predominância de hábito alimentar insetívoro pode indicar um ambiente mais alterado (ALMEIDA, 1982). Já as espécies onívoras são favorecidas pela presença da borda florestal e pela heterogeneidade proporcionada pelos ambientes perturbados (ANJOS, 1990; ALEIXO, 2001).

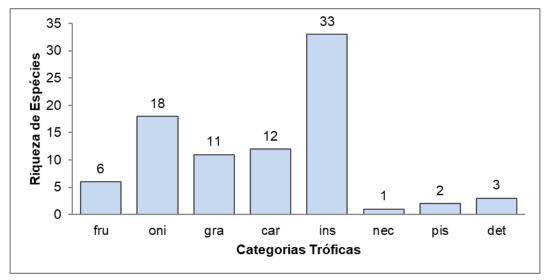


Gráfico 8.2: Estrutura trófica da avifauna registrada na área amostral do empreendimento.

As categorias de hábitat preferencial foram compostas por 36 espécies de Áreas Abertas (AA), 27 espécies de Bordas de Mata (BOR), 13 espécies de Ambientes Florestais (FLO), e lagos rios e banhados (LBR) obtiveram menor registro com 10 espécies, conforme pode ser observado no gráfico.

O elevado número de espécies que frequentam áreas abertas (AA) pode ser considerado como um bioindicador de qualidade ambiental de caráter negativo, ou seja, indicando áreas antropizadas. Por outro lado, foi registrado um número considerável de aves de ambientes de bordas de mata e ambiente florestal, isso indica que o local ainda apresenta condições de suporte e sobrevivência para a maioria das espécies aqui registrada.

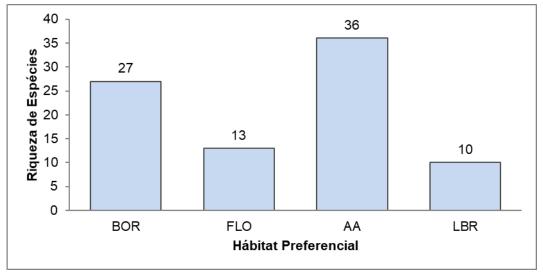


Gráfico 8.3: Hábitat preferencial da avifauna registrada na área amostral do empreendimento.

Das espécies registradas durante os estudos, 41 foram através de contato auditivo/visual, ou seja, espécies visualizadas ao mesmo tempo que vocalizaram, 39 por meio de contato visual e 06 espécies registradas auditivamente.

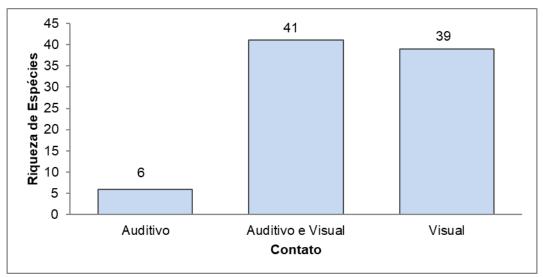


Gráfico 8.4: Contato com as espécies registradas.

Na tabela abaixo, verifica-se que a maioria das espécies registradas através de contato auditivo e visual, foram anotadas para áreas abertas.

Tabela 8.2: Contingência da relação entre o contato e os habitats preferenciais da avifauna

registrada na área de influência do empreendimento.

Contate		Habitat prefe	rencial	
Contato	AA	BOR	FLO	LBR
Auditivo	1	3	2	0
Auditivo e Visual	19	13	6	3
Visual	16	11	5	7

Dessas nenhuma consta como ameaçada segundo a lista IUCN (2022), lista federal MMA (2022) e Decreto nº 11797/2018. No presente relatório registrou-se duas espécies típicas do Bioma Mata Atlântica: *Aramides saracura* e *Trogon surrucura*.

Dentre as aves migratórias de curta e longa distância que ocorrem na área de estudo destacam-se: Butorides striata, Cathartes aura, Ictinia plúmbea, Patagioenas picazuro, Zenaida auriculata, Colonia colonus, Elaenia chiriquensis, Tyrannus savana, Empidonomus varius, Tyrannus melancholicus, Anthus hellmayri, Leistes superciliaris, Tersina viridis, Sporophila caerulescens e Zonotrichia capensis (WIKIAVES, 2023; LIMA, 2013). Não foi observado a presença de espécies exóticas na área da CGH (Instituto Hórus - Base de Dados Nacional de Espécies Exóticas Invasoras, 2016).

Nas campanhas de monitoramento não foram encontradas espécies bioindicadoras e duas espécies sentinela. Dentre as espécies consideradas sinantrópicas, destacam-se: Cathartes aura, Coragyps atratus, Vanellus chilensis, Pitangus sulphuratus, Furnarius rufus, Molothrus bonariensis, Columbina talpacoti, Columbina picui e Zenaida auriculata.

O grau de deslocamento das espécies foi classificado em baixo, com 56 espécies, médio, com 20 espécies e alto, com 10 espécies. A maior parte das espécies encontradas teve porte médio, com 51 registros, seguida por espécies de porte pequeno, com 29 e uma pequena quantidade de espécies de porte grande, sendo 06 registros.

A curva de acumulação de espécies permite observar que em todas as incursões a campo, novos registros foram sendo realizados, podendo perceber que a

curva está se encaminhando para a estabilização, onde a inclusão de novas espécies nas próximas campanhas seria mínima ou nula.

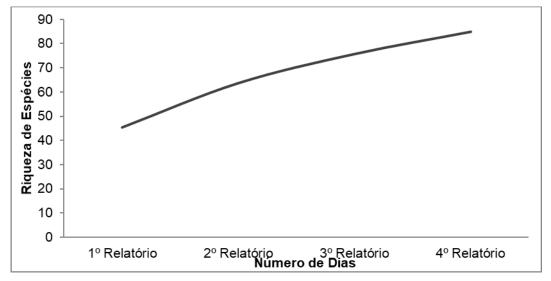


Gráfico 8.5: Curva de acumulação de espécies calculada a partir do Past dos dados obtidos na CGH Rincão da Ponte.

8.1.3 Relatório Fotográfico

Figura 8.1: Busca ativa de avifauna – 4° Relatório

Fonte: Construnível, 2022.

Figura 8.2: Registro fotográfico – 4° Relatório Fonte: Construnível, 2022.

Figura 8.3: Busca ativa noturna de avifauna – 4º Relatório

Fonte: Construnível, 2023.

Figura 8.5: *Tyto furcata* (suindara) – 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.7: Syrigma sibilatrix (maria-faceira) – 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.4: Registro auditivo – 4° Relatório Fonte: Construnível, 2023.

Figura 8.6: *Tyrannus melancholicus* (suiriri) – 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.8: *Pygochelidon cyanoleuca* (andorinha-pequena-de-casa) – 4° Relatório. Fonte: Construnível, 2023.

Figura 8.9: *Theristicus caudatus* (curicaca) – 4° Relatório.

Fonte: Construnível, 2023.

Figura 8.11: *Milvago chimango* (chimango) – 4° Relatório.

Fonte: Construnível, 2023.

Figura 8.10: *Tyto furcata* (suindara) – 4° Relatório

Fonte: Construnível, 2023.

Figura 8.12: *Heterospizias meridionalis* (gavião-cabloco) – 4° Relatório. Fonte: Construnível, 2023.

8.2 MASTOFAUNA

8.2.1 Métodos

O levantamento ocorreu no período diurno (08h às 12h; 16h às 18h). Além disso, foram realizadas buscas noturnas para registros de espécies que possuem estes hábitos (19h às 21h). Os transectos noturnos foram realizados em comum com os demais grupos, totalizando 08 horas/dia, por um período de 03 dias/semestre, totalizando 24 horas/campo/homem, com frequência semestral perfazendo 48 horas/ano, além de registros esporádicos durante as visitas técnicas.

Os registros de mamíferos serão obtidos pelas seguintes metodologias que serão descritas a seguir:

PROCURA ATIVA: No método de procura ativa a procura por vestígios de fezes, pelagem, grunhidos, avistamentos e rastros foi realizada por meio de transectos

lineares onde foi realizado um censo ao longo de uma trilha pré-estabelecida em terra com uso de caminhadas e/ou veículos terrestres em ambas as margens do rio na área de influência do empreendimento.

ARMADILHAS FOTOGRÁFICAS: Ao longo período de amostragem foram utilizadas duas armadilhas fotográficas (HC 801ª) com câmera digital e sensor de infravermelho para detectar a presença de animais, disparar fotografias e gravar. As armadilhas foram instaladas em áreas que constituem rotas potenciais de deslocamentos dos animais como trilhas e ambientes próximos a cursos d'água, que são fáceis de perceber no chão da floresta ou campo, e foram fixadas nos troncos de árvores em altura média de 60 cm do chão (AURICCHIO & SALOMÃO, 2002). Como recurso de atrair os animais foi utilizado isca como: frutas, bacon, sardinha e açúcar de baunilha. O equipamento foi mantido em funcionamento por 24 horas/dia, durante três dias em cada ponto de amostragem.

COLETA DE DADOS SECUNDÁRIOS: Será realizada uma compilação de dados secundários sobre os mamíferos com ocorrência potencial para região de estudo através de consulta ao acervo científico das entidades e universidades da região, além de revisão de obras bibliográficas de cunho técnico e científico.

ENTREVISTAS COM A COMUNIDADE: Foram realizadas entrevistas com moradores da região, próxima a área da CGH, aproveitando a oportunidade para questionamentos relacionados a mastofauna, tomando o devido cuidado com nomes comuns aplicados a espécies assemelhadas.

8.2.2 Resultados e Discussão

Através dos métodos aplicados, foram registradas 14 espécies, pertencentes a 06 ordens e 09 famílias. A ordem mais representativa foi Carnivora, com 06 espécies, sendo a família Canidae a com mais registros (03 espécies).

A tabela a seguir, demonstra a lista de espécies registradas durante os monitoramentos, nas áreas de influência direta da CGH Rincão da Ponte.

Tabela 8.3: Lista de espécies da mastofauna registrada nas áreas de influência da CGH.

			TATUS D NSERVAÇ		_ <u>:</u> 2	jo	i	ė	0	<u>'a</u>	0	into	ade			0			lico
Ordem/Família/Espécie	Nome Popular	IUCN	BR	PR	 1º Relatório	2º Relatório	3º Relatório	4º Relatório	Registro	Estratégia	Tamanho	Deslocamento	Sensibilidade	Hábitos	Modos	Atividade	Guildas	Método	ID Fotográfico
Didelphimorphia																			
Didelphidae																			
¹³ Didelphis albiventris	gambá, sarué	LC	-	LC	Х	Х		Х	vis	K	MP	М	b	sf	sol	dn	oni	AF	Fig.: 8.22
Cingulata Dasypodidae																			
¹Dasypus sp.	tatu	-	-	-		х			ves	K	MP	В	m	sf	sol	dn	oni	ВА	
¹ Dasypus novemcinctus Chlamyphoridae	tatu-galinha	LC	-	LC				x	ves/vis	K	MP	В	m	sf	sol	dn	oni	BA/AF	Fig.: 8.18 - 8.23
¹Euphractus sexcinctus	tatu-peba	LC	-	LC	х				vis	K	MP	В	m	sf	sol	dn	oni	ВА	
Rodentia	р																		
Caviidae																			
¹Cavia aperea	preá	LC	-	LC		Х			vis	K	PP	В	b	ter	gr	dn	her	AF	
¹ Hydrochoerus hydrochaeris	capivara	LC	-	LC	х		x	х	ves	K	GP	М	b	saq	gr	dn	her	ВА	Fig.: 8.19
Carnivora																			
Canidae																			
¹ Chrysocyon brachyurus	lobo-guará	NT	VU	VU		Х			ves	K	GP	M	b	ter	sol	cn	oni	BA	
¹Cerdocyon thous	cachorro-do-mato, graxaim	LC	-	LC	Х	Х	Х	Χ	ves/vis	K	MP	М	b	ter	sol	cn	oni	BA/AF	Fig.: 8.17
¹ Lycalopex gymnocercus	graxaim-do-campo	LC	-	LC			х		ves/vis	K	MP	М	b	ter	sol	cn	oni	ВА	
Procyonidae	g																		
¹Nasua nasua	quati	LC	-	LC	Х				vis	K	MP	М	b	sar	gr	diu	oni	ВА	
¹ Procyon cancrivorus	mão-pelada	LC	-	LC	Х				ent	K	MP	М	b	ter	sol	not	oni	ENT	
Felidae	•																		
^{1,6,7} Puma concolor	onça-parda	LC	-	VU				х	vis	K	GP	М	m	ter	sol	cn	car	AF	Fig.: 8.21
Lagomorpha																			

			TATUS D ISERVAÇ		_ <u>:</u>	io	i	ė	0	<u>'a</u>	0	ento	ade			9			fico
Ordem/Família/Espécie	Nome Popular	IUCN	BR	PR	1º Relatóı	2º Relató	3º Relató	4º Relató	Registro	Estratégia	Tamanho	Deslocame	Sensibilidade	Hábitos	Modos	Atividade	Guildas	Método	ID Fotográfic
Leporidae																			
³ Lepus europaeus	lebrão	LC	-	-		Χ	Χ	Χ	vis	R	PP	М	b	ter	sol	not	her	BA/AF	Fig.: 8.20
Artiodactyla																			
Cervidae																			
¹Mazama gouazoubira	veado-catingueiro	LC	LC	LC	Х	Х		Х	ves/vis	K	GP	М	m	ter	sol	diu	her	BA/AF	Fig.: 8.24

Legenda: Status de Conservação (LC) Pouco Preocupante; (CR) Criticamente em Perigo; (VU) vulnerável; (NT) Quase Ameaçado; (EN) Em Perigo; (-) Nada Consta. Hábitos: (ter) Terrestre; (ar) Arborícola; (sf) Semi-fossorial; (saq) Semi-aquático; (sar) Semi-arborícola; (vo) Voador. Registro: (aud) Auditivo; (vis) Visual; (av) Auditivo/Visual; (ves) Vestigial; (ent) Entrevista. Guildas: (oni) Onívora; (her) Herbívora; (car) Carnívora; (gra) Granívora; (fru) Frugívora. Sensibilidade e Deslocamento: (B) baixo; (M) médio; (A) alto. Método: (BA) Busca Ativa; (LN) Linha de Captura; (AF) Armadilha Fotográfica; (RD) Rede de Neblina. Estratégia: (K) Prole pequena com cuidado parental; (R) Prole grande sem cuidado parental. Tamanho: (PP) pequeno porte; (MP) grande porte; (GP) grande porte. Indicações: (*) endêmica; (**) exótica; (1) residente; (2) migratória; (3) sinantrópica; (4) sentinela; (5) estenóica; (6) rara; (7) bioindicadora.

As espécies onívoras foram as mais registradas, com 09 espécies, seguidas pelas espécies herbívoras, com 04 registros e as espécies carnívoras, com 01 apenas. Conforme gráfico abaixo.

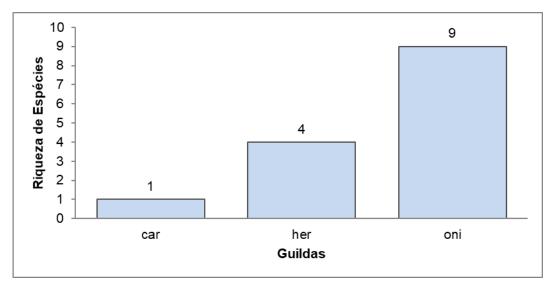


Gráfico 8.6: Guildas tróficas das espécies registradas.

Esta riqueza de mamíferos onívoros pode ser um reflexo a disponibilidade de recursos proporcionados por mudanças induzidas pelo homem, como sistemas pecuários e agricultura, os quais oferecem abrigo e alimentação, os quais mamíferos onívoros aproveitam (SWIHART *et al.*, 2003). Além disto, espécies onívoras podem aumentar sua taxa de ingestão de presas por conta da grande presença de presas que se abrigam no mosaico decorrente de paisagens agrícolas (PARDO-VARGAS; PAYÁN-GARRIDO, 2015).

Quanto aos hábitos preferenciais das espécies registradas, os terrestres apresentaram maior quantidade, com 08 espécies, sendo seguido pelos semifossoriais, com 04 espécie, já os registros de semi-aquático e semi-arboricolas foram apresentados com 01 espécie cada, conforme gráfico abaixo.

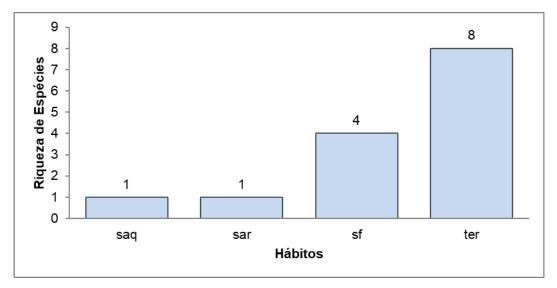


Gráfico 8.7: Hábitos preferenciais das espécies registradas.

Em relação as espécies ameaçadas de extinção, foram registradas as espécies: *Chrysocyon brachyurus*, o qual consta como Quase Ameaçada (NT) na lista internacional (2022) e Vulnerável (VU) nas listas estadual (2018) e federal (2022), e *Puma concolor*, que consta como Vulnerável (VU) na lista estadual (2018). As demais espécies não constam nas listas das espécies ameaçadas da IUCN (2022), do MMA (2022) e estadual (Decreto nº 11797/2018).

Foi registrada uma espécie rara e bioindicadora de qualidade ambiental, sendo ela *Puma concolor*.

A maioria dos mamíferos encontrados podem ser considerados característicos de ambientes alterados, estando os mesmos sujeitos às modificações ambientais que ocorreram na região. Porém, algumas espécies registradas são de áreas mais preservadas, isto pode representar indício que o local apresenta regeneração ambiental, possibilitando a permanência e sobrevivência dessas espécies dependentes de áreas de vegetação.

8.2.3 Relatório fotográfico

Figura 8.13: Instalação de armadilhas fotográfica – 4° Relatório. Fonte: Construnível, 2022.

Fonte: Construnível, 2022.

Figura 8.15: Registro de vestígios - 4° Relatório.

Figura 8.16: Instalação de armadilhas fotográfica – 4° Relatório. Fonte: Construnível, 2023.

Fonte: Construnível, 2023.

Figura 8.17: Cerdocyon thous (graxaim) - 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.18: Dasypus novemcinctus (tatugalinha) - 4° Relatório. Fonte: Construnível, 2022.

Figura 8.19: *Hydrochoerus hydrochaeris* (capivara) - 4° Relatório. Fonte: Construnível, 2022.

Figura 8.21: *Puma concolor* (onça-parda) - 4° Relatório.

Fonte: Construnível, 2023.

Figura 8.23: *Dasypus novemcinctus* (tatugalinha) - 4° Relatório. Fonte: Construnível, 2023.

8.3.1 Métodos

ANFÍBIOS

Figura 8.20: Lepus europaeus (lebrão) - 4°

Fonte: Construnível, 2022.

Figura 8.22: *Didelphis albiventris* (gambá-deorelha-branca) - 4° Relatório. Fonte: Construnível, 2023.

Figura 8.24: *Mazama gouazoubira* (veadocatingueiro) - 4° Relatório. Fonte: Construnível, 2023.

O levantamento de anfíbios na AID do empreendimento foi realizado através de busca ativa, que foi realizado através de caminhamentos por transectos lineares ao longo da área de estudo, objetivando visualizar as espécies em seus hábitats naturais. Os transectos foram percorridos nos períodos diurno e noturno. Durante o percurso foram vistoriados ambientes costumeiramente habitados por anfíbios, tais como: bromélias de solo e epífitas, fendas de rochas, cavidades em árvores, abaixo de troncos e rochas dispostas no solo, dentro de "cupinzeiros", na serapilheira e na vegetação marginal dos cursos de água (CARDOSO, 2003; SILVANO; SEGALLA, 2005).

A busca ativa também ocorreu em sítios de reprodução (poças temporárias, charcos, banhados, açudes) de forma a amostrar espécies que poderão estar em período reprodutivo.

O levantamento ocorreu no período diurno (06h às 08h). Além disso, foram realizadas no período crepuscular e noturno, das 18h às 21h, por um período de 03 (três) dias, totalizando 05 horas/pesquisador/dia, totalizando 15 horas/pesquisador, com frequência semestral, perfazendo 30 horas/ano, além de registros esporádicos durante as visitas técnicas.

Para o levantamento de anfíbios das áreas de influência foi utilizada a seguinte metodologia:

BUSCA ATIVA: realizado com procura visual, é um método bastante versátil e generalista de detecção e coleta de vertebrados em campo, muito utilizado para amostragem e visualização de animais. Consiste em percorrer trilhas preexistentes vagarosamente a procura de animais, revirando pedras, troncos e serapilheira. Além dos levantamentos programados, ocorreram procuras aleatórias durante os demais períodos do dia visando encontrar exemplares em deslocamento por estradas e trilhas, com o intuito de enriquecer a base de dados do estudo.

RÉPTEIS

O estudo dos répteis na AID do empreendimento foi realizado através de busca ativa, que foi realizado através de caminhamentos por transectos lineares ao longo da área de estudo, objetivando visualizar as espécies em seus hábitats naturais. Os transectos foram percorridos nos períodos diurno e noturno.

67

Os horários para a busca ativa de répteis ocorrerão nos horários mais quentes do dia, das 10h00min às 15h00min, por um período de 03 (três) dias, totalizando 05 horas/pesquisador/dia por um período de 03 dias/semestre, totalizando 15 horas/pesquisador, com frequência semestral, perfazendo 30 horas/ano, além de registros esporádicos durante as visitas técnicas.

Para o levantamento de répteis das áreas de influência será utilizada a seguinte metodologia:

BUSCA ATIVA: realizado com procura visual, é um método bastante versátil e generalista de detecção e coleta de vertebrados em campo, muito utilizado para amostragem e visualização de animais. Consiste em percorrer trilhas preexistentes vagarosamente a procura de animais, revirando pedras, troncos e serrapilheira. Além dos levantamentos programados, ocorreram procuras aleatórias durante os demais períodos do dia visando encontrar exemplares em deslocamento por estradas e trilhas, com o intuito de enriquecer a base de dados do estudo.

8.3.2 Resultados

O levantamento da herpetofauna, registrou 10 espécies, sendo destas 06 espécies de anfíbio e 04 espécies de répteis, na área de influência direta da CGH. 2Destaca-se que não houve registro de espécies exóticas/invasoras, endêmicas ou ameaçadas de extinção.

A tabela a seguir, apresentam as espécies herpetofauna registradas durante os monitoramentos nas áreas de influência direta da CGH Rincão da Ponte.

Tabela 8.4: Lista de espécies da herpetofauna registrados durante os monitoramentos ambientais.

		Statu	s de Cons	servação	rio	ë	rio	rio	ę.	0	. <u>a</u>	Q	ento	ade	0	stral	ifico
Ordem/Família/Espécie	Nome Popular	IUCN	BR	PR	 1º Relatório	2º Relatório	3º Relatório	4º Relatório	Ambiente	Contato	Estratégia	Tamanho	Deslocamento	Sensibilidade	Método	Ponto Amostral	ID Fotográfico
Anura																	
Hylidae																	
¹³ Scinax fuscovarius	perereca-de banheiro	LC	-	-	Х	Χ			Ab;Al	aud	r	PP	В	b	BA	POE03	
¹Boana faber	sapo-martelo	LC	-	-	Х				Ab;Al	aud	r	PP	В	b	BA	POE02-04	
Leptodactylidae																	
¹ Physalaemus cuvieri	rã-cachorro	LC	-	-		Χ	Х	Χ	Ab;Al	av	r	PP	В	b	BA	POE01	Fig.: 8.27
¹ Leptodactylus fuscus	rã-assobiadora	LC	-	-		Χ	Х		Ab;Al	vis	r	PP	В	b	BA	POE01	
¹³ Physalaemus gracilis	rã-chorona	LC	-	-	Х				Ab;Al	aud	r	PP	В	b	ВА	POE02	
¹Leptodactylus latrans	rã-manteiga	LC	-	-			Х		Al	vis	r	PP	В	b	ВА	POE04	
Squamata																	
Tropiduridae																	
¹Tropidurus itambere	calango	LC	-	-			Х		Al	vis	r	PP	В	m	ВА	ВА	
Anomalepididae																	
¹Liotyphlops beui	cobra-cega	LC	-	-			Х		ter	vis	r	PP	В	b	ВА	ВА	
Teiidae	-																
¹³ Salvator merianae	teiú	LC	-	-		Х	Х	Х	ter	vis	r	MP	М	b	ВА	AF/POE01	Fig.: 8.28
Colubridae																	
¹Spilotes pullatus	caninana	LC	-	-	Х				sar	ent	r	MP	М	m	ВА	BA	

Legenda: Status de Conservação (LC) Pouco Preocupante; (CR) Criticamente em Perigo; (VU) Vulnerável; (NT) Quase Ameaçado; (EN) Em Perigo; (-) Nada Consta. Hábitos e Ambiente: (ter) Terrestre; (arb) Arborícola; (crz) Criptozóico; (saq) Semi-aquático; (Ab;Al) Aberto/Alagado. Contato: (aud) Auditivo; (vis) Visual; (av) Auditivo/Visual; (ves) Vestigial; (ent) Entrevista. Guildas: (her) Herbívora; (car) Carnívora; (oni) Onívora. Tamanho e Deslocamento: (B) Baixo; (M) Médio; (A) Alto. Estratégia (K) Prole pequena com cuidado parenta; (R) Prole grande sem cuidado aprental. Método: (BA) Busca Ativa. Ponto Amostral: (POE) Ponto de Observação e Escuta. Indicações: (*) Endêmica; (**) Exótica; (1) Residente; (2) Migratória; (3) Sinantrópica; (4) Sentinela; (5) Estenóica; (6) Rara; (7) Bioindicadora.

Das espécies registradas durante as campanhas, 05 foram através de contato visual, 03 por contato auditivo, 01 por contato auditivo/visual e 01 por entrevista.

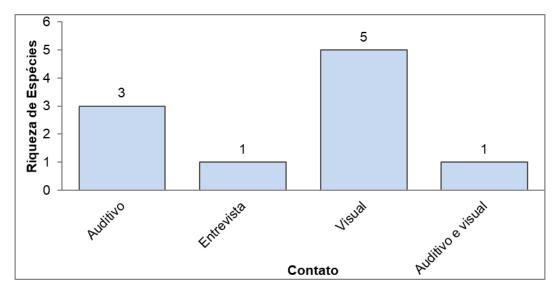


Gráfico 8.8: Contato com as espécies registradas.

Durante o monitoramento não foram registras espécies ameaçadas de extinção, segundo consulta nas listas IUCN (2022), ICMBio/MMA (2022) e Decreto Nº 11797/2018. Destaca-se que não houve registro de espécies exóticas/invasoras, que são apontados como disseminadores de patógenos, competidores intraespecíficos e causadores do declínio de anfíbios (SILVA, 2010).

Cabe ressaltar que as alterações ambientais acabam reduzindo drasticamente os locais de reprodução, alimentação, sobrevivência ou abrigo, tanto de anfíbios como de répteis, levando a inserção nas listas de animais com algum grau de ameaça de extinção (ICMBio, 2011; HADDAD *et al.*, 2013).

A variação sazonal tende a influenciar repteis e anfíbios, há períodos favoráveis (primavera/verão), onde obtêm-se um balanço favorável de recursos necessários para maximização da aptidão, dentre eles o crescimento, maturidade sexual, esforço reprodutivo dentre outros; os períodos cujo a temperatura são amenas e invernais acabam minimizando a capacidade dos animais ectotérmicos acarretando estágios de hibernação, diapausa e estivação, refletindo na amplitude de dispersão; há também influencias indiretas como a disponibilidade de alimento (ROFF, 1992; BEGON, 2006; VISSER *et al.*, 2009; MORIN, 2011).

No estado do Paraná, bem como nos demais estados brasileiros, a vegetação encontra-se bastante fragmentada, que dificultam a manutenção de grandes populações, especialmente de répteis.

Répteis e anfíbios, tem sido muito caracterizado como bioindicadores, ou seja, que podem indicar as condições ambientais devido a sua alta sensibilidade diante de perturbações ambientais e sua restrição de habitat utilizado. Cabe ressaltar que as alterações ambientais acabam reduzindo drasticamente os locais de reprodução, alimentação, sobrevivência ou abrigo de espécies, levando a inserção de muitas delas nas listas de animais ameaçados de extinção (HADDAD *et al.*, 2013).

8.3.3 Relatório fotográfico

Figura 8.25: Busca ativa de herpetofauna – 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.27: Registro de *Physalaemus cuvieri* (rã-cachorro) – 4° Relatório. Fonte: Construnível, 2022.

Figura 8.26: Busca ativa de herpetofauna – 4° Relatório.

Fonte: Construnível, 2022.

Figura 8.28: Registro de *Salvator marinae* (teiú) – 4° Relatório. Fonte: Construnível, 2022.

8.4 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

As atividades de monitoramento da fauna terrestre para o próximo semestre serão realizadas nos mesmos pontos amostrais da presente campanha, utilizando as mesmas metodologias de coleta, escuta e observação da fauna.

8.5 PONTOS E ESFORÇO AMOSTRAL DE FAUNA TERRESTRE

As tabelas a seguir indicam os pontos amostrais de fauna terrestre utilizados na campanha de monitoramento da CGH Rincão da Ponte e o esforço amostral empregado em cada táxon.

Tabela 8.5 Lista de pontos amostrais de fauna terrestre da campanha de monitoramento da CGH Rincão da Ponte.

	COORDENADAS PO	NTOS AMOSTRAIS		
	4º RELA	TÓRIO		
PONTO DE AMOSTRAGEM	LONGITUDE	LATITUDE	MARGEM	AMBIENTE
	TRANSECTOS PAI	RA BUSCA ATIVA		
TO01	572327.01 m E	572410.22 m E	Direita	Aberto
1001	7297071.10 m S	7296730.85 m S	Direita	Aberto
TO02	572257.82 m E	572540.77 m E	Diroito	Aborto/Floroctal
1002	7296533.27 m S	7296620.04 m S	Direita	Aberto/Florestal
TO03	572404.05 m E	572202.30 m E	Diroito	Aborto
1003	7296721.47 m S	7296529.73 m S	Direita	Aberto
TO04	572181.13 m E	571974.99 m E	Direite	Abouto/Flourostal
TO04	7296627.08 m S	7296854.70 m S	Direita	Aberto/Florestal
	AMOSTRAGEM DE	HERPETOFAUNA		
POE.01	572333.94 m E	7296592.08 m S	Direita	Florestal
POE.02	572391.49 m E	7296900.16 m S	Direita	Aberto
POE.03	572559.00 m E	7296707.00 m S	Direita	Borda
POE.04	572125.00 m E	7296609.00 m S	Direita	Florestal
	AMOSTRAGEM D	E MASTOFAUNA		
AF.01	572387.05 m E	7297003.71 m S	Direita	Florestal
AF.02	572425.95 m E	7296664.46 m S	Direita	Florestal

Tabela 8.6: Tabela de esforço amostral da fauna terrestre na CGH Rincão da Ponte.

CGH RINCÃO DA PONTE	Dia 0º	1	Dia 02	2	Dia 03	3	Dia 0	4	Total de Horas
	Horário	Horas	Horário	Horas	Horário	Horas	Horário	Horas	
Plano de Monitoramento de Avifauna	06 às 10h 16 às 18h 19 às 21h	8	06 às 10h 16 às 18h 19 às 21h	8	06 às 10h 16 às 18h 19 às 21h	8	06 às 10h 16 às 18h 19 às 21h	8	32
Plano de Monitoramento de Mastofauna			08h às 12h 16h às 18h 19h às 21h	8	08h às 12h 16h às 18h 19h às 21h	8	08h às 12h 16h às 18h 19h às 21h	8	24
Plano de Monitoramento de Anfíbios	06 às 08h 18 às 21h	5			06 às 08h 18 às 21h	5	06 às 08h 18 às 21h	5	15
Plano de Monitoramento de Répteis	10 às 15h	5			10 às 15h	5	10 às 15h	5	15

9 PROGRAMA DE MONITORAMENTO DE FAUNA AMEAÇADA

Espécies ameaçadas são aquelas que se encontram em algum nível de perigo de extinção, sendo que sua sobrevivência é incerta, principalmente se os fatores que ocasionam essa ameaça continuarem atuando de forma constante (IBAMA, 2011). Segundo a lista de espécies ameaçadas de 2018 do Ministério do Meio Ambiente, no Brasil há cerca de 1.249 espécies em algum dos níveis de ameaça.

Na área onde está instalada a CGH Rincão da Ponte foram registradas, até o presente relatório, 02 espécies classificadas como ameaçadas de extinção, sendo elas *Chrysocyon brachyurus* (lobo-guará) e *Puma concolor* (onça-parda).

> Chrysocyon brachyurus

O lobo-guará é a maior espécie de canídeo da América do Sul, com comprimento entre 95 e 115 cm (REIS et al., 2014; PEREIRA et al., 2020). Possui pelagem no tom castanho-avermelhado, longos membros escuros e grandes orelhas (LION, 2007). Habita campos, pastagens e cerrados da América do Sul (SOUSA, 2000), no Brasil habita principalmente o cerrado, leste do Pantanal, Campos Sulinos e Campos Gerais do Sul (PAULA *et al.*, 2018; PEREIRA *et al.*, 2020).

As principais atividades que afetam e ameaçam esta espécie são realizadas por humanos, principalmente a alteração e perda de habitat, atropelamentos em rodovias e patógenos contraídos pela proximidade com animais domésticos (QUEIROLO et al., 2011; PAULA; DEMAT, 2015; COELHO et al., 2018; PEREIRA et al., 2020).

É listada como Quase Ameaçada (NT) na IUCN (2022) e como Vulnerável (VU) na lista Federal (2022) e Estadual (2018).

Puma concolor

Puma concolor é o segundo maior felino do Brasil, amplamente distribuída pelo continente americano, ocorrendo do Canadá até a região da Cordilheira do Andes (ICMBIO, 2017). A coloração dessa espécie é uniforme em tons de marromacinzentado claro até um marrom-avermelhado, sendo amplamente relatados casos de melanismo (MAIA, 2009). Segundo Ripple e Beschta (2006), a onça-parda exerce

um papel essencial na manutenção dos ecossistemas em que ocorre devido a sua alimentação, a qual consta de animais silvestres de portes variados.

Uma das principais ameaças a esta espécie é a caça excessiva, ocorrente desde a chegada dos colonizadores (ICMBIO, 2017), além disso a fragmentação do habitat traz diversas ameaças a onça-parda, como diminuição da população de suas presas, maior susceptibilidade a patógenos de animais domésticos e atropelamneots pela ampliação da malha rodoviária (ICMBIO, 2017).

Está listada como Vulnerável (VU) na lista Estadual (2018).

9.1 OBJETIVOS

- Identificar e caracterizar os principais processos de risco às espécies e/ou às comunidades faunísticas na região;
- Propor medidas de conservação, manejo, controle e fiscalização para a fauna regional.
- Realizar atividades de educação ambiental com os colaboradores e moradores do entorno da importância da preservação da biodiversidade;
- Instalar placas informativas nas áreas de influência da CGH, indicando a presença das espécies.

9.2 METODOLOGIA

O programa de monitoramento das espécies ameaçadas é realizado simultaneamente ao programa de monitoramento de fauna, sendo utilizadas as metodologias indicadas para cada grupo taxonômico. A instalação de armadilhas, transectos e busca ativa são realizados contemplando a área de influência da CGH Rincão da Ponte.

Além disso são realizadas atividades de educação ambiental, sendo entregues *folders* para os colaboradores e moradores do entorno, no intuito de esclarecer e conscientizar sobre a importância da preservação das espécies ameaçadas.

Também são confeccionadas e instaladas placas informativas dos animais ameaçados de extinção registrados na área do empreendimento.

9.3 RESULTADOS

O monitoramento de fauna registrou estas espécies ameaçadas no período do 2º e 4º relatório. A educação ambiental referente a estas espécies foram realizadas com os colaboradores e moradores do entorno do empreendimento nas campanhas conseguintes, sendo continuados nas próximas campanhas.

Na tabela a seguir, estão as coordenadas georreferenciadas das espécies registradas nos monitoramentos da CGH Rincão da Ponte.

Tabela 9.1: Georreferenciamento das espécies ameaçadas registradas nos monitoramentos.

ESPÉCIES _		COORDENADAS												
LOI LOILO _	1º REL.	2º REL.	3º REL.	4º REL.										
Chrysocyon brachyurus	_	572053.88 m E		_										
Chrysocyon brachydrus	-	7296882.35 m S	_	-										
Divino comentari				572419.00 m E										
Puma concolor	-	-	-	7296662.00 m S										

A espécie lobo-guará foi registrada por meio de vestígio de pegada e onçaparda por meio de armadilha fotográfica.

Figura 9.1: *Chrysocyon brachyurus* (loboguará) – 2º Relatório. Fonte: Construnível, 2021.

Figura 9.2: *Puma concolor* (onça-parda) – 4º Relatório. Fonte: Construnível, 2023.

10 PROGRAMA DE MONITORAMENTO DA ICTIOFAUNA

10.1 ATIVIDADES DESENVOLVIDAS

Foram repetidos os pontos amostrais pré-estabelecidos, com o intuito de avaliar a diversidade da ictiofauna do Rio Fortaleza, identificar suas características e avaliar as suas condições de adaptabilidade frente à modificação do ambiente aquático.

Tabela 10.1: Caracterização dos pontos de coleta da ictiofauna e localização.

Ponto	Localização	Coord. Geográficas	Características do Ambiente
P1	Montante Barramento	572407.23 m E	APP reduzida na margem direita e conservada na margem esquerda,
		7296907.06 m S	substrato argiloso e ambiente lêntico.
P2	Trecho de Vazão Reduzida	572534.51 m E	APP reduzida em ambas as margens,
1 2	Treelle de Vazae Reduzida	7296625.15 m S	substrato rochoso e ambiente lótico.
50		572038.57 m E	APP reduzida na margem direta e
P3	Jusante Casa de Força	7296694.36 m S	inexistente na margem esquerda, substrato rochoso e ambiente lótico.

As capturas foram realizadas com equipamentos de pesca diversificados, buscando amostrar as distintas populações de peixes nas diferentes fases do ciclo de vida.

Os materiais utilizados foram idênticos em todos os pontos amostrais e o esforço de pesca padronizado, possibilitando assim a comparação dos dados. As redes foram instaladas ao entardecer e retirados ao amanhecer ficando na água por aproximadamente 12 horas/ponto. A tarrafa foi utilizada pela manhã quando as redes foram retiradas.

Tabela 10.2: Detalhamento técnico dos petrechos de pesca utilizados no monitoramento ictiofaunístico da área de influência da CGH.

Petrechos	Malha /anzol¹	Comprimento (m)	Altura (m)
Malhadeira	1,5	10	1,5
Malhadeira	2,5	10	1,5
Malhadeira	3,5	10	1,5
Tarrafa	1,5	15	-

¹ medida entre nós adjacentes.

Os peixes capturados foram registrados em fichas de campo, onde descreveu-se local de coleta, data e petrecho de pesca utilizado e dados biométricos (peso e comprimento total).

A identificação das espécies foi realizada seguindo os manuais apresentados por Graça e Pavanelli (2007); Nakatani *et al.* (2001); Géry (1977);

Zaniboni Filho (2008). Após o processo de identificação, a nomenclatura das espécies foi conferida de acordo com *Check List of the Freshwater Fishes of South and Central América* (Reis *et al.*, 2003).

10.1.1 Análise de dados

Com base nas informações de captura das diferentes espécies calculou-se a diversidade, equitabilidade e a riqueza das espécies, utilizando-se o software Past (Hammer *et al.*, 2003).

Tabela 10.3: Caracterização de diversidade, equitabilidade, riqueza e abundância.

Análises	Características
Diversidade	Representa o número de espécies presentes e a uniformidade com que os indivíduos são distribuídos no ambiente.
Equitabilidade	Indica se os indivíduos têm ou não a mesma abundância numa unidade amostral.
Riqueza	Representa o número de espécies identificadas em cada ponto amostral.
Abundância	Remete ao número de indivíduos em uma unidade amostral.

Com o objetivo de analisar a produtividade pesqueira da área sob influência da CGH, calculou-se o índice de Captura por Unidade de Esforço "CPUE", considerando para este as malhadeiras utilizadas.

10.2 RESULTADOS E DISCUSSÃO

Amostrou-se na área de influência da CGH Rincão da Ponte, uma riqueza de 20 espécies pertencentes a 09 famílias e 03 ordens, registrando 141 espécimes.

Para os monitoramentos realizados a ordem que mais apresentou espécies foi Characiformes, com 10 espécies. O predomínio desta ordem, já verificado em outros estudos, constitui um padrão já bem documentado na literatura, que corrobora com a composição de peixes de água doce esperada para a região tropical como um todo (CASTRO & MENEZES, 1998; LOWE-MCCONNELL, 1999).

A tabela a seguir, apresenta a lista com as espécies registrados durante os monitoramentos da ictiofauna nas áreas de influência direta da CGH Rincão da Ponte.

Tabela 10.4: Lista de espécies da ictiofauna registradas nas áreas de influências da CGH.

			ATUS NSEF ÇÃO	RVA	son	(gr)	19	Re	ıl.	20	Re	ıl.	30	Re	I.	40	Re	I.	tal	/ so	/ so	sa/	/ so	<u>'a</u>	0	ento	fico
Ordem/ Família / Espécie	Nome Popular	A.	BR A	IOCN	N° Indivíduos	Biomassa	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	FO% - Total	% Indivíduos Espécies	% Indivíduos Ordem	% Biomassa Espécie	% Indivíduos Ordem	Estratégia	Tamanho	Deslocamento	ID Fotográfico
Characiformes																											,
Characidae																											
¹Astyanax sp.	lambari	-	-	_	5	159, 0					Χ			Х					16,7 %	3,5 %		1,8 %		r	P P	N.M; M.C.D	
¹ Psalidodon fasciatus ¹ Astyanax bimaculatus	lambari-rabo-de- vermelho lambari-de-rabo- amarelo	-	-	-	18 1	474, 0 12,0 0	x	x						x		x	x	x x	50,0 % 8,3 %	12,8 % 0,7 %		5,5 % 0,1 %		r r	P P P	N.M; M.C.D N.M; M.C.D	
¹Astyanax laticeps	lambari	-	-	_	1	17,0 0												х	8,3 %	0,7 %		0,2 %		r	P P	N.M; M.C.D	
Erythrinidae						Ü													70	70		70			•	W.O.D	
¹Hoplias lacerdae	trairão	-	-	_	1	340, 0				х									8,3 %	0,7 %	27,0	3,9 %	28,3	r	G P	N.M; M.C.D	
¹ Hoplias malabaricus Parodontidae	traira	-	-	-	5	101 9,0	x			^					x				16,7 %	3,5 %	%	11,8 %	%	r	G P	N.M; M.C.D	
¹Apareiodon sp.	canivete	-	-	_	2	96,0 0									х				8,3 %	1,4 %		1,1 %		r	P P	N.M; M.C.D	
¹Parodon aff. nasus	canivete	-	-	_	2	51,0 0											х		8,3 %	1,4 %		0,6 %		r	P P	N.M; M.C.D	
Anostomidae 1Leporinus amblyrhynchus Crenuchidae	piava	-	-	-	2	259, 0			x										8,3 %	1,4 %		3,0 %		r	P P	N.M; M.C.D	
¹Characidium zebra	mocinha	-	-	_	1	21,0 0										x			8,3 %	0,7 %		0,2 %		r	P P	N.M; M.C.D	Fig.: 10.10
Perciformes Cichlidae						ŭ													,0	70	12,1 %	,0	6,2 %		•		

			ATUS NSEF ÇÃO	RVA	son	(gr)	19	Re	ı.	2	P Re	el.	3	º Re	el.	4	° Re	el.	Total	/sol	/ 501	sa/ e	/sor	<u>ia</u>	2	ento	ifico
Ordem/ Família / Espécie	Nome Popular	A R	BR	IOCN	N° Indivíduos	Biomassa	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	Ponto 01	Ponto 02	Ponto 03	F0% - To	% Indivíduos Espécies	% Indivíduo Ordem	% Biomass Espécie	% Indivíduos Ordem	Estratégia	Tamanho	Deslocamento	ID Fotográfico
¹Geophagus iporangensis Siluriformes	cará	-	-	-	17	538, 0				х			х	Х		х		Х	41,7 %	12,1 %		6,2 %		r	P P	N.M; M.C.D	Fig.: 10.13
Pimelodidae ¹ Pimelodus maculatus Heptapteridae	mandi	-	-	-	1	70,0 0									x				8,3 %	0,7 %		0,8 %		r	M P	N.M; M.C.D	
¹Rhamdia quelen	jundiá	-	-	_	7	142 0,0		х	х		х			х				х	41,7 %	5,0 %		16,4 %		r	G P	N.M; M.C.D	Fig.: 10.7
Loricariidae						0,0													,,	,,		,,			•		
¹Hypostomus sp.	cascudo	-	-	_	22	919, 0		Х			х			х	х		х		41,7 %	15,6 %	61,0	10,6 %	65,5	r	M P	N.M; M.C.D	
¹ Hypostomus ancistroides	cascudo	-	-	_	17	732, 0								х	х		Х		25,0 %	12,1 %	%	8,5 %	%	r	M P	N.M; M.C.D	Fig.: 10.9
¹ Hypostomus aff. margaritifer	cascudo	-	-	_	25	151 6,0		х	Х			х		х	х			х	50,0 %	17,7 %		17,5 %		r	M P	N.M; M.C.D	Fig.: 10.6
¹Hypostomus aff. hermanni	cascudo	-	-	_	1	19,0 0		Х											8,3 %	0,7 %		0,2 %		r	M P	N.M; M.C.D	
¹Hemiancistrus sp.	cascudo	-	-	_	1	21,0											х		8,3 %	0,7 %		0,2 %		r	M P	N.M; M.C.D	Fig.: 10.8
¹Hypostomus derbyi	cascudo	-	-	-	9	891, 0										х	х	х	25,0 %	6,4 %		10,3 %		r	M P	N.M; M.C.D	Fig.: 10.11
¹Hypostomus paulinus	cascudo-preto	-	- - D=-	-	3	83,0) - u! -		<u> </u>			х		8,3 %	2,1 %		1,0 %		r	M P	N.M; M.C.D	Fig.: 10.12

Legenda: Status de Conservação (LC) Pouco Preocupante; (CR) Criticamente em Perigo; (VU) Vulnerável; (NT) Quase Ameaçado; (EN) Em Perigo; (-) Nada Consta. Deslocamento: (N.M; M.C.D) Espécies não migratórias ou migratória de curtas distâncias; (M.L.D) Espécies migratórias de longas distâncias no período reprodutivo. Tamanho: (B) Baixo; (M) Médio; (A) Alto. Estratégia (K) Prole pequena com cuidado parenta; (R) Prole grande sem cuidado parental. Indicações: (*) Endêmica; (**) Exótica; (¹) Residente; (²) Migratória; (³) Sinantrópica; (⁴) Sentinela; (⁵) Estenóica; (⁶) Rara; (७) Bioindicadora.

De acordo com as espécies registradas, nenhuma é considerada rara ou está listada com algum grau de ameaça em listas nacionais ou estaduais, ressalta-se que não houve registros de espécies exóticas/invasoras.

Para as espécies com importância comercial, com real interesse na economia pesqueira, registrou-se *Rhamdia* quelen. *Astyanax bimaculatus, Psalidodon fasciatus, Hoplias lacerdae, Hoplias malabaricus* e *Rhamdia quelen*.

Dentre as espécies coletadas, a mais representativa numericamente foi *Hypostomus* aff. *margaritifer* com 25 indivíduos (17,7%), além disso, apresentou também a maior biomassa, tendo uma representatividade de 17,5%. Como pode ser observado no gráfico abaixo.

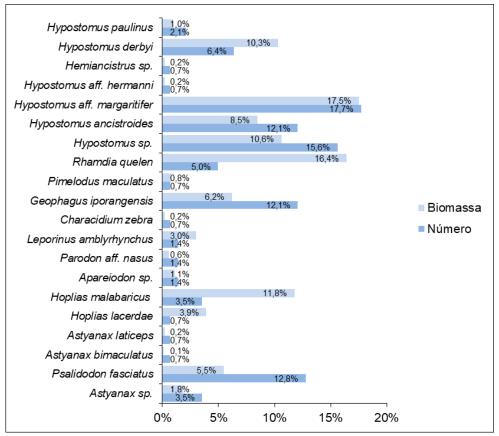


Gráfico 10.1: Representatividade numérica e em biomassa das espécies capturadas na área de influência da CGH Rincão da Ponte.

10.2.1 Distribuição Espacial

Comparando os dados de todas as campanhas de monitoramento, observou-se que o P2 apresentou melhores resultados para os índices ecológicos de

abundância, diversidade e equitabilidade, já para o índice de riqueza foi o ponto P3 que apesentou os melhores resultados, como mostram os gráficos a seguir.

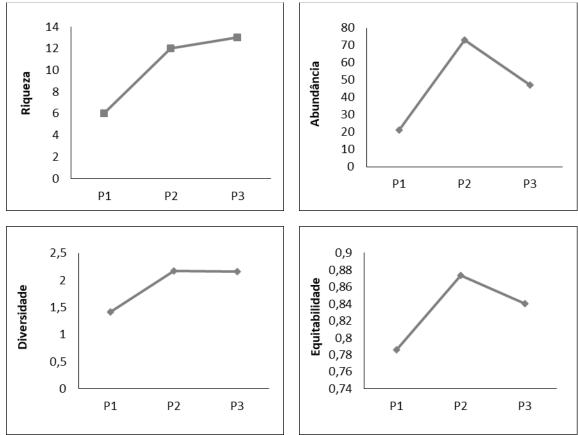


Gráfico 10.2: Índices ecológicos especiais da ictiofauna na área de influência da CGH.

A abundância no P2 pode ser explicada pelo fato de haver uma cachoeira no local, servindo como uma barreira natural e impedindo o movimento ascendente dos peixes no rio. Além disso, há uma melhor oxigenação para as espécies.

Figura 10.1: Barreira natural da CGH Rincão da Ponte.

10.2.1 Captura por Unidade de Esforço (CPUE)

A análise da produtividade foi realizada através do cálculo da Captura Por Unidade de Esforço (CPUE), avaliada de acordo com a área de rede imersa. Este índice permite inferir sobre a estruturação da comunidade, possibilitando avaliar alterações ocasionadas por mudanças ambientais ou mesmo advindas de alterações comportamentais.

A CPUE média, considerando o esforço das redes malhadeiras apresentouse média: 0,0641Kg/m² e 0,0053 Kg/m²/hora. O P03 foi o ponto com maior Captura Por Unidade de Esforço, conforme mostra o gráfico abaixo.

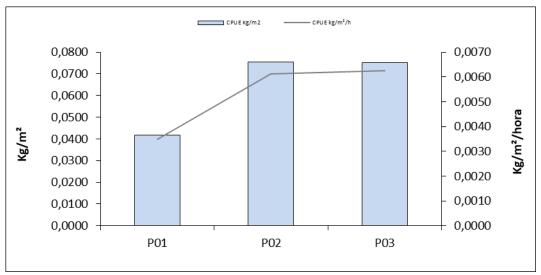


Gráfico 10.3: Captura por Unidade de Esforço (CPUE) para malhadeiras obtidos durante o levantamento ictiofaunístico da área de influência do empreendimento.

A composição da ictiofauna é influenciada por uma série de variações nas condições ambientais (UIEDA; CASTRO, 1999) modificadas ao longo do rio, como a morfologia (volume, declividade e profundidade), velocidade de correnteza, substrato, tipo e quantidade de partículas em suspensão na água (VANNOTE, *et al.* 1980).

A quantidade de partículas em suspensão, associada à natureza do substrato do fundo, tem forte influência sobre o grau de transparência. Abrigos constituídos de rochas do fundo, vegetação marginal submersa ou detritos vegetais acumulados, são importantes refúgios para os peixes, criando heterogeneidade de habitats, influenciando na diversidade, biomassa dos peixes e produtividade dos rios (UIEDA; CASTRO, 1999).

A ictiofauna da área de influência do empreendimento hidrelétrico CGH Rincão da Ponte, caracteriza-se pela presença de espécies nativas de pequeno e médio porte especialmente da ordem Siluriformes e Characiformes. As espécies capturadas são registradas facilmente, por serem indivíduos que estão presente em diversos rios da atual bacia hidrográfica e apresentam-se em estudos que são realizados na região.

10.3 CONSIDERAÇÕES FINAIS

Pelos dados coletados sobre a ictiofauna no presente relatório, onde foram durante os monitoramentos, o número de espécies de peixes é satisfatório, visando que as campanhas foram realizadas em diferentes estações do ano, com variação climática e possíveis características naturais que afetam o comportamento da ictiofauna.

10.3.1 Relatório fotográfico

Figura 10.2: Instalação das redes de espera – 4° Relatório.

Fonte: Construnível, 2022.

Figura 10.5: Devolução de indivíduo ao rio – 4° Relatório.

Figura 10.4: Instalação das redes de espera – 4° Relatório.

Fonte: Construnível, 2023.

Figura 10.6: *Hypostomus aff margaritifer* (cascudo) – 4° Relatório. Fonte: Construnível, 2022.

Figura 10.8: *Hemiancistrus* sp. (cascudo) – 4° Relatório.

Fonte: Construnível, 2022.

Figura 10.10: *Characidium zebra* (mocinha) – 4° Relatório.

Fonte: Construnível, 2023.

Fonte: Construnível, 2023.

Figura 10.7: *Rhamdia quelen* (jundiá) – 4° Relatório.

Fonte: Construnível, 2022.

Figura 10.9: *Hypostomus ancistroides* (cascudo) – 4° Relatório. Fonte: Construnível, 2022.

Figura 10.11: *Hypostomus derbyi* (cascudo) – 4° Relatório.

Fonte: Construnível, 2023.

Figura 10.12: *Hypostomus paulinus* (cascudo) – 4° Relatório. Fonte: Construnível, 2023.

Figura 10.13: *Geophagus iporangensis* (cará) – 4° Relatório. Fonte: Construnível, 2023.

10.4 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

O monitoramento das espécies da ictiofauna continuará sendo realizado nos mesmos pontos, utilizando a mesma metodologia que foi aplicada para o atual relatório.

10.5 ESFORÇO AMOSTRAL DA ICTIOFAUNA

A tabela a seguir indica o esforço amostral empregado no táxon ictiofauna nas campanhas de monitoramento da CGH Rincão da Ponte.

Tabela 10.5: Esforço amostral do táxon ictiofauna para o empreendimento.

CGH RINCÃO DA PONTE	Dia (01	Dia	02	Dia	03	Dia (Total de Horas	
	Horário	Hora s	Horário	Horas	Horário	Horas	Horári o	Hor as	
Plano de Monioramento de Ictifauna			18 h	às	06h	12			12

11 PROGRAMA DE GERENCIAMENTO DE RESÍDUOS

A gestão dos resíduos apresenta locais de acondicionamento correto, métodos de coleta e disposição final. Este programa é responsável por orientar os colaboradores sobre a real necessidade da correta disposição final dos resíduos.

A gestão de resíduos sólidos se enquadra nas atividades de saneamento básico, pois existe a interdependência entre este, a saúde e o meio ambiente.

Portanto, as ações de gerenciamento de resíduos da construção civil devem ser inter-relacionadas para contribuir com a melhoria da qualidade ambiental proporcionada a população.

11.1 OBJETIVOS

O foco deste estudo é apresentar formas de armazenamento, retirada e destinação adequada dos resíduos gerados na operação do empreendimento:

- Orientar os colaboradores do gerenciamento dos resíduos do empreendimento;
- Destinar adequadamente casa resíduo produzido;
- Armazenar os resíduos de forma a prevenir acidentes nos locais onde estão sendo depositados;
- Executar as normas exigidas.

11.2 ATIVIDADES REALIZADAS

Durante o período de monitoramento ambiental realizado neste relatório de monitoramento, foram desenvolvidas atividades de supervisão de aconselhamento aos colaboradores sobre o armazenamento e destinação dos resíduos gerados.

Foram realizados diálogos com os operadores, sobre a necessidade de organizar o ambiente de trabalho e os cuidados com que deve ter ao manusear e separar qualquer resíduo.

Figura 11.1: Lixeiras instaladas próximo a Figura 11.2: Lixo descartado de maneira Casa de Força. Fonte: Construnível, 2022.

correta no empreendimento. Fonte: Construnível, 2022.

11.3 ATIVIDADES PREVISTAS PARA A PRÓXIMA CAMPANHA

Para o próximo relatório, busca-se dar continuidade aos trabalhos de monitoramento e conscientização sobre a destinação correta dos resíduos.

12 PROGRAMA DE MONITORAMENTO E CONTROLE DE MACRÓFITAS AQUÁTICAS

Macrófitas aquáticas são plantas encontradas em ambiente natural, adaptadas ao meio aquático e as condições que este meio proporciona. Podem viver submersas, flutuando na água, em solos saturados ou periodicamente inundados nas matas (ESTEVES, 1998; IRGANG; GASTAL JR, 1996; COOK, 1996; SOS REPRESA GUARAPIRANGA, 2008).

As macrófitas são responsáveis pela oxigenação da água, são refúgio e fonte de alimento para muitas espécies, funcionam como filtro e podem proteger as margens dos corpos d'água contra erosão (SOS REPRESA GUARAPIRANGA, 2008).

Seu ciclo de vida é relativamente rápido e seu crescimento varia de acordo com as condições climáticas, com as concentrações de nutrientes e o espaço livre entre as plantas, entre outros fatores (SOS REPRESA GUARAPIRANGA, 2008).

Dessa forma para o efetivo monitoramento, estão sendo coletados dados de qualidade da água, pois, essas informações permitirão distinguir com segurança quais os parâmetros que sofrerão modificações durante o processo de transformação do ecossistema e como interferiram na alteração da qualidade do ambiente.

12.1 OBJETIVOS

Estes monitoramentos têm objetivo identificar a ocorrência das espécies de macrófitas que podem ocorrer nas margens do Rio Fortaleza.

Esse programa busca:

- Identificar e monitorar a ocorrência de macrófitas:
- Monitorar das variáveis liminológicas;
- Mapear de bancos de macrófitas;
- Definir medidas mitigadoras e corretivas.

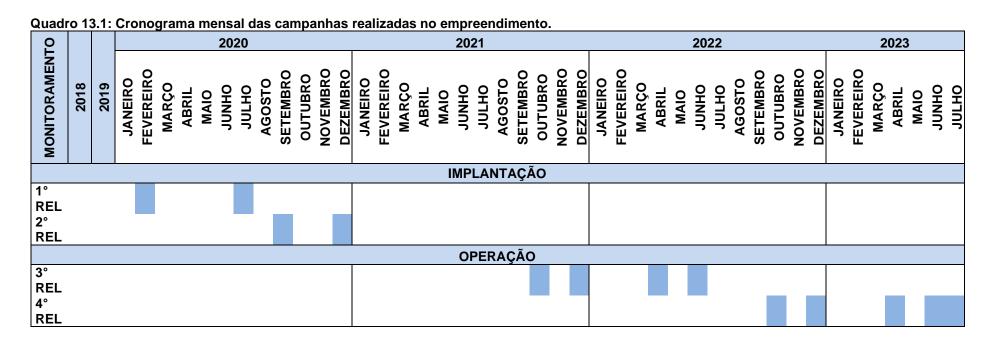
12.2 ATIVIDADES REALIZADAS

Durante as campanhas realizadas foram percorridos trechos a pé no perímetro do Rio Fortaleza na área do empreendimento em busca de macrófitas aquáticas, sendo dada atenção em trechos lênticos do perímetro e locais que

pudessem ocorrer acúmulo das mesmas. Os locais de dififici acesso foram visualizados de forma aérea, com sobrevoo de drone.

No presente relatório não houve o registro de macrófitas aquáticas na área do empreendimento. Na figura a seguir observa-se os caminhamento de busca ativa realizados.

Figura 12.1: Transectos de busca ativa de macrófitas – 4º Relatório. Fonte: Construnível, 2023.


12.3 ATIVIDADES PREVISTAS PARA O PRÓXIMO SEMESTRE

O monitoramento continuará por toda a fase de operação da CGH Rincão da Ponte, a procura das macrófitas e caso necessário serão removidas.

13 CRONOGRAMA DE REALIZAÇÃO DAS CAMPANHAS DE MONITORAMENTO

Na tabela a seguir estão representados os períodos em que foram realizadas as campanhas referentes aos relatórios de monitoramento da Licença Operação de Regularização n°35950, recebida em 21/12/2018 com vencimento para 21/12/2022, e n° 36956, recebida em 07/07/2022 com vencimento para 04/01/2023, e Autorização Ambiental de Monitoramento n° 55769.

A renovação da Licença Operação do empreendimento já foi requisitada na data de 23/11/2022, sob protocolo n° 19.750.956-2.

Os relatórios referentes a implantação do empreendimento tiveram campanhas realizadas de forma trimestral com relatórios semestrais, conforme condicionantes 06 e 14 da AA de Monitoramento. Além disso, os relatórios referentes a operação da CGH seguiram as condicionantes 07 e 14 da mesma autorização. A seguir encontram-se as descrições das condicionantes:

<u>Condicionante 06</u>: "Deverão ser realizadas, durante a instalação do empreendimento, campanhas de monitoramento trimestrais."

Condicionante 07: "Após o fim da fase de instalação e a partir do início da operação, deverão ser realizadas campanhas trimestrais durante os dois primeiros anos de operação e, após o fim desse período, deverá ser discutido em conjunto ao IAR o cronograma para a continuidade do programa."

Condicionante 14: "Deverão ser apresentados ao Instituto Água e Terra relatórios parciais: (i) após a conclusão das 2 campanhas pré-obra, (ii) relatórios semestrais durante a instalação do empreendimento e (iii) relatórios anuais na fase de operação. [...]"

14 REFERÊNCIAS BIBLIOGRÁFICAS

ALEIXO, A. Conservação da avifauna da Mata Atlântica: Efeito da fragmentação florestal e a importância de florestas secundárias. In: J.L.B. ALBUQUERQUE; J.F. CÂNDIDO JUNIOR. F.C. STRAUBE; A.L. ROOS, Ornitologia e conservação: da ciência às estratégias. Curitiba, Sociedade Brasileira de Ornitologia, p. 199-206, 2001.

ARDO-VARGAS, Lain E.; PAYÁN-GARRIDO, Esteban. Mamíferos de un agropaisaje de palma de aceite en las sabanas inundables de Orocué, Casanare, Colombia. Biota Colombiana, [s. I], v. 16, n. 1, p. 54-66, dez. 2015.

ALMEIDA, A.F. Análise das categorias de nichos tróficos das aves em matas ciliares em Anhembi, Estado de São Paulo. Silvic. SP; São Paulo 15(3):1787-1795, 1982.

ANJOS, L. Distribuição de aves em uma floresta de araucária da cidade de Curitiba (sul do Brasil). Acta Biológica Paranaense,19(1-4):51-63, 1990.

AURICCHIO, P. & SALOMÃO, M. G. **Técnicas de coleta e preparação de Vertebrados**. Instituto Pau Brasil de História Natural. São Paulo, 2002. 348 pp.

BEGON, M., TOWNSEND, C.R., HARPER, J.L. Ecology: from individuals to ecosystems. **Oxford: Blackwell Publishing**. 2006.

BRASIL. AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO.

. INDICADORES DE QUALIDADE - ÍNDICE DE QUALIDADE DAS ÁGUAS (IQA).

Disponível em: http://pnqa.ana.gov.br/indicadores-indice-aguas.aspx. Acesso em: 17 jul. 2023.

BRASIL. **Resolução CONAMA** Resolução nº 357, de 29 de abril de 2005. Dispões sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de e efluentes, e das outras providências. Diário Oficial da República Federativa do Brasil. 2005.

BRASIL. **Resolução CONAMA** Resolução nº 430, de 13 de maio de 2011. Dispões sobre as condições de efluentes, complementa e altera a Resolução n° 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente – CONAMA.Diário Oficial da República Federativa do Brasil. 2011.

CARDOSO, João Luiz Costa *et al.* **Animais peçonhentos no Brasil: biologia, clínica e terapêutica dos acidentes**. São Paulo: SARVIER, 2003. 468p.: il.

CASTRO, R. M. C. & MENEZES, N. A. Estudo diagnóstico da diversidade de peixes do Estado de São Paulo. In Biodiversidade do Estado de São Paulo, Brasil: Síntese do conhecimento ao final do século XX, vertebrados (R. M. C. Castro, ed.). WinnerGraph, São Paulo, p. 1-13. 1998.

CALLISTO, M. *et al.*. Macroinvertebrados bentônicos como ferramenta para avaliara a saúde de riachos. Revista Brasileira de Recursos Hídricos, Belo Horizonte, v. 6, n. 1, p. 71-82, mar. 2001.

CETESB. (1997) Companhia Estadual de Tecnologia e Saneamento Ambiental. Controle da qualidade da água para consumo humano: bases conceituais e operacionais. São Paulo.

CETESB, Companhia de Tecnologia de Saneamento Ambiental, São Paulo. **Índice de Qualidade da Água**. Disponível em

http://www.cetesb.sp.gov.br/Agua/rios/indice_iap_iqa.asp.

CETESB. 2006. **Desenvolvimento de índices biológicos para o biomonitoramento em reservatórios do estado de São Paulo**. *Relatório técnico*.
São Paulo, SP. 258p.

CULLEN-JÚNIOR, L.; RUDRAN, R. & VALLADARES- PÁDUA. **Métodos de estudos em biologia da conservação e manejo da vida silvestre**. Curitiba: UFPR, 2003.

DECRETO N° 11797. **Norma Estadual nº 11797, de 22 de novembro de 2018**. Reconhece e atualiza Lista de Espécies de Aves pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná e dá outras providências, atendendo o Decreto nº 3.148, de 2004. Decreto Nº 11797 de 22/11/2018. DOE - PR, 22 nov. 2018.

GÉRY, J. Characids of the world. Neptune City. TFH publications Inc. 672p. 1977.

GRAÇA, W. J. & PAVANELLI, C. S. Peixes da planície de inundação do Alto Rio Paraná e áreas adjacentes. Maringá: EDUEM, 241 p. 2007.

HADDAD, C. F. B.; TOLEDO, L. F.; PRADO, C. P. A.; LOEBMANN, D.; GASPARINI, J. L.; SAZIMA, I. Guia dos Anfíbios da Mata Atlântica: Diversidade e Biologia. [S. I.]: EditoraAnolis, 2013. 544 p.

HAMMER, Ø.; HARPER, D. A. T. e RYAN, P. D. **Past Palaentological Statistics**, ver. 1.12, 2003. Disponível em: http://folk.uio.no/ohammer/past.

ICMBIO, INSTITUTO CHICO MENDES DE BIODIVERSIDADE. Plano de ação nacional para conservação da onça-parda. **Sumário executivo do plano de ação nacional para a conservação da onça-parda**. Brasil, 2017. 8 p.

Instituto Hórus de Desenvolvimento e Conservação Ambiental - **Base de Dados**Nacional de Espécies Exóticas Invasoras, 2016. http://i3n.institutohorus. org.br.

IUCN. 2022. **RED LIST OF THREATENED SPECIES**. Disponível em < http://www.iucnredlist.org/.

LAMPARELLI, M. C. Grau de trofia em corpos d'água do estado de São Paulo: avaliação dos métodos de monitoramento – São Paulo – Tese (Doutorado) – Instituto de Biociências – USP. 238p. 2004.

LIMA, L. M. Aves da Mata Atlântica. Riqueza, composição, status, endemismo e conservação. Dissertação (Mestrado em Ciência na área de zoologia). Instituto de Biociência da Universidade de São Paulo. São Paulo, 2013.

LOPES, F. W. A.; MAGALHÃES JR, A. P. Condições naturais de pH em águas superficiais e sua interferência sobre o índice de qualidade das águas (IQA): estudo de caso na bacia do ribeirão de Carrancas-MG. Revista Geográfica de América Central, v. 2, n. 58E, p. 1-19, 2017.

LOWE-MCCONNELL, R. H. Estudos ecológicos de comunidades de peixes tropicais. Edusp, São Paulo, 1999.

LION, Marília Bruzzi. **Diversidade Genética e Conservação do Lobo-guará** *Chrysocyon brachyurus*, em áreas Protegidas do Distrito Federal. 2007. 66 f.

Dissertação (Mestrado) - Curso de Ciências Biológicas, Departamento de Ecologia,
Universidade de Brasília, Brasília, 2007.

MAIA, Caroline Marques. Comportamento de Onça-Parda (*Puma concolor*), no Zoológico de Campinas, frente à visitação pública. 2009. 41 f. TCC (Graduação) - Curso de Ciências Biológicas, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Campus de Botucatu, São Paulo, 2009.

MIKICH, S. B., R. S. BERNILS. Livro Vermelho da Fauna Ameaçada no Estado do Paraná. Curitiba: IAP, 2004. Disponível em:http://www.pr.gov.br/iap.

MORIN, P.J. Community Ecology. Oxford: Blackwell Science. 2011.

NAKATANI, K.; AGOSTINHO, A. A.; BAUMGARTNER, G.; BIALETZKI, A.; SANCHES, P. V.; MAKRAKIS, M. C. & PAVANELLI, C. S. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM, 2001.

OLIVEIRA, A. J. et al. (2015). Coliformes Termotolerantes: Bioindicadores da Qualidade da Água Destinada ao Consumo Humano. Atas de Saúde Ambiental, 3(2), 24-29.

PACHECO, J.F.; SILVEIRA, L.F.; ALEIXO, A.; AGNE, C.E.; BENCKE, G.A.; BRAVO, G.A; BRITO, G.R.R.; COHN-HAFT, M.; MAURÍCIO, G.N.; NAKA, L.N.; OLMOS, F.; POSSO, S.; LEES, A.C.; FIGUEIREDO, L.F.A.; CARRANO, E.; GUEDES, R.C.; CESARI, E.; FRANZ, I.; SCHUNCK, F. & PIACENTINI, V.Q. 2021. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee – second edition. **Ornithology Research**, 29(2). https://doi.org/10.1007/s43388-021-00058-x.

PAULA, R. C.; RODRIGUES, F. H. G.; QUEIROLO, D.; JORGE, R. P. S.; LEMOS, F. G.; RODRIGUES, L. A. *Chrysocyon brachyurus* (Illiger, 1815). In: ICMBio (Org). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília: ICMBio/MMA, 2018. p. 314 –319.

PEREIRA, A.D.; VIDOTTO-MAGNANI, A.P.; ARASAKI, M.O.; SHIOZAWA, M.M.; ORSI, M.L. Primeiro registro de *Chrysocyon brachyurus* (Carnivora) para o norte Pioneiro paranaense, novas ocorrên-cias, e compilação dos registros para o estado do Paraná. **Luminária**, União da Vitória, v.22, n.02, p. 25 –30, 2020.

PIANKA, E. R. **On r- and k- selection**. Departament of Zoology University of Texas Austin, Texas. 1970.

PORTARIA MMA N° 148. **Portaria nº 148, de 07 de junho de 2022**. Altera os Anexos da Portaria nº 443, de 17 de dezembro de 2014, da Portaria nº 444, de 17 de dezembro de 2014, e da Portaria nº 445, de 17 de dezembro de 2014, referentes à atualização da Lista Nacional de Espécies Ameaçadas de Extinção. Portaria MMA Nº 148, de 7 de Junho de 2022. 108. ed. Brasil, 08 jun. 2023. Seção 1, p. 74-163.

QUEVEDO, C.M.G. and PAGANINI, W.S., 2009. Impactos das atividades humanas sobre a dinâmica do fósforo no meio ambiente e seus reflexos na saúde pública. Ciência & Saúde Coletiva, 10(4), pp.865-875.

REIS, Roberto E.; KULLANDER, Sven O.; FERRARIS JUNIOR, Carl J.. Check List of the Freshwater Fishes of South and Central America. Porto Alegre: Edipucrs, 2003. 742 p.

REIS, N. R.; FREGONEZI, M. N.; PERAC-CHI, A. L.; SHIBATTA, O. A.; SAR-TORE, E. R.; ROSSANEIS, B. K. et al. Mamíferos terrestres de médio e grande porte da Mata Atlântica: guia de campo. Rio de Janeiro: *Technical Books*, 2014. 146 p.

RIPPLE, W. J., & BESCHTA, R. L. (2006). Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. **Biological Conservation**, 133, 397-408.

ROFF, D.A. The evolution of life histories. New York: Chapman and Hall. 1992.

SICK, H. 1997. **Ornitologia brasileira**. Rio de Janeiro: Editora Nova Fronteira. 912 p.

SIGRIST, Tomas. **Avifauna Brasileira: Pranchas e Mapas**. 1. ed. Vinhedo, SP: Avis brasilis, 2009. 492 p.

SILVANO, D.L. & SEGALLA, M.V. Conservação de anfíbios no Brasil. **Megadiversidade** 1(1): 79-86. 2005.

SILVA, J.B.L.; MELO, E.C.; MATOS, A.T. **Desenvolvimento de software para cálculo do IQA – Índice de Qualidade de Água.** IV Congresso Brasileiro da Sociedade Brasileira de Informática Aplicada a Agropecuária e a Agroindústria – Monte pascoal Praia Hotel, Porto Seguro – Bahia, 17 a 19 de setembro de 2003.

SILVA, E. T. Hábito alimentar da rã invasora *Lithobates catesbeianus* (Shaw, 1802) e sua relação com anuros nativos na Zona da Mata de Minas Gerais, Brasil. 2010.

SOS, REPRESA GUARAPIRANGA. **Macrófitas: as plantas aquáticas da Guarapiranga e a qualidade da nossa água**. Proliferação de plantas aquáticas na represa do Guarapiranga. Revista do Projeto Yporã, maio, 2008.

SOUSA, Leandro Ruas Tavares e. *Chrysocyon brachyurus* – Ecologia e Comportamento do Lobo-guará. 2000. 24 f. TCC (Graduação) - Curso de Ciências da Saúde, Ciências Biológicas, Centro de Ensino Unificado de Brasília, Brasília, 2000.

SWIHART, Robert K. et al. Responses of 'resistant' vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Diversity And Distributions, Michigan, v. 9, p. 1-18, 2003.

THOMAS, W. M.; MIRANDA, G. H. B. **Uso de armadilhas fotográficas em levantamentos populacionais**. In: CULLEN JÚNIOR, L.; RUDRAN, R. & VALLADARES- PÁDUA. Métodos de estudos em biologia da conservação e manejo da vida silvestre. Curitiba: UFPR. 2004.

VISSER M.E., HOLLEMAN, L.J.M., CARO, S.P. **Temperature has a causal effect on avian timing of reproduction**. Proceedings of The Royal Society Biological Science 276: 2323-2331. 2009.

UIEDA, V. S.; CASTRO, R. M. C. 1999. **Coleta e fixação de peixes de riachos.** In: Caramaschi, E. P.; Mazzoni, R.; Peres-Neto, P. R. (Eds.). Ecologia de Peixes de Riachos, Série Oecologia Brasiliensis. Vol. VI. PPGE-UFRJ, Rio de Janeiro, Brasil. p. 1-22.

VANNOTE, R.L. et al.. **The river continuum concept**. Canadian Journal of Fisheries and Aquatic Science, Toronto, v.37, p.130-137, 1980.

VISSER M.E., HOLLEMAN, L.J.M., CARO, S.P. Temperature has a causal effect on avian timing of reproduction. **Proceedings of The Royal Society Biological** Science 276: 2323-2331. 2009.

WIKIAVES. A Enciclopédia das Aves do Brasil. Disponível em:

http://www.wikiaves.com.br/

WILSON, Edward Osborne; MACARTHUR, Robert. **The Theory of Island Biogeography**. Princeton: Princeton Landmarks In Biology, 1967. 203 p.

ZANIBONI FILHO, Evoy *et al.* 2008. **Catálogo ilustrado de peixes do alto rio Uruguai**. Ed. UFSC e Tractebel Energia, Florianópolis, Brasil, 128p.

15 ANEXOS

ART: ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA;

LAUDOS DO MONITORAMENTO LIMNOLÓGICO (ÁGUA, ZOOBENTOS, ZOOPLÂNCTON E FITOPLÂNCTON;

MON-RIP-01 – ARRANJO GERAL DAS ESTRUTURAS

MON-RIP-02 - UNIDADES AMOSTRAIS DE MASTOFAUNA;

MON-RIP-03 – UNIDADES AMOSTRAIS DE HERPETOFAUNA;

MON-RIP-04 - UNIDADES AMOSTRAIS DE ICTIOFAUNA;

MON-RIP-05 – UNIDADES AMOSTRAIS DE COLETA DE ÁGUA;

MON-RIP-06 – UNIDADES AMOSTRAIS DE MACRÓFITAS.